Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar

Not Accessible

Your library or personal account may give you access

Abstract

The influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar (HSRL) is experimentally investigated and theoretically evaluated. The measurements analyzed in this study were made during three field campaigns by the German Aerospace Center airborne HSRL. The influence of the respective theoretical model on spaceborne HSRL retrievals is also estimated. Generally, the influence on aerosol extinction coefficient can be neglected for both airborne and spaceborne HSRLs. However, the influence on aerosol backscatter coefficient depends on aerosol concentration and is larger than 3% (6%) at ground level for airborne (spaceborne) HSRLs, which is considerable for the spaceborne HSRL, especially when the aerosol concentration is low. A comparison of the HSRL measurements and coordinated ground-based sunphotometer measurements shows that the influence of the model is observable and comparable to the measurement error of the lidar system.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret
Appl. Opt. 47(3) 346-358 (2008)

Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar

Yupeng Zhang, Dong Liu, Zhuofan Zheng, Zhengkuan Liu, DeYun Hu, Bing Qi, Chong Liu, Lei Bi, Kejun Zhang, Chunao Wen, Lingying Jiang, Yuling Liu, Ju Ke, and Zhongming Zang
Appl. Opt. 57(10) 2627-2637 (2018)

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties

Johnathan W. Hair, Chris A. Hostetler, Anthony L. Cook, David B. Harper, Richard A. Ferrare, Terry L. Mack, Wayne Welch, Luis Ramos Izquierdo, and Floyd E. Hovis
Appl. Opt. 47(36) 6734-6752 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved