OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5259–5265

Spatial phase filtering based on the intensity-dependent refractive index of PbS nanocomposite film

Pushpa Ann Kurian and C. Vijayan  »View Author Affiliations

Applied Optics, Vol. 48, Issue 28, pp. 5259-5265 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of stable films containing PbS nanocrystals as media for self-adaptive phase filtering in phase contrast imaging of transparent objects by a cost-effective exploitation of nonlinear optical refraction in a simple, all-optical, and self-adjusting 4 f imaging system. The optical nonlinearity is characterized by z-scan technique using a continuous wave He–Ne laser as the excitation source. The mechanism of nonlinearity in this case is mainly due to the nonlocal thermo-optical interaction between the laser beam and the sample. The value of nonlinear refractive index coefficient is found to be 3.5 × 10 7 cm 2 / W . The nanocomposite material shows a thermal lens effect and is a potential candidate for phase contrast imaging.

© 2009 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(100.4997) Image processing : Pattern recognition, nonlinear spatial filters

ToC Category:
Image Processing

Original Manuscript: May 5, 2009
Revised Manuscript: August 25, 2009
Manuscript Accepted: September 1, 2009
Published: September 21, 2009

Pushpa Ann Kurian and C. Vijayan, "Spatial phase filtering based on the intensity-dependent refractive index of PbS nanocomposite film," Appl. Opt. 48, 5259-5265 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999). [CrossRef]
  2. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999). [CrossRef] [PubMed]
  3. K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30
  4. Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007). [CrossRef]
  5. A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007). [CrossRef]
  6. K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007). [CrossRef]
  7. K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006). [CrossRef]
  8. T. Y. Chang, J. H. Hong, and P. Yeh, “Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies,” Opt. Lett. 15, 743-745 (1990). [CrossRef] [PubMed]
  9. S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004). [CrossRef]
  10. A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001). [CrossRef] [PubMed]
  11. M. Y. Shih, A. Shishido, P. H. Chen, M. V. Wood, and I. C. Khoo, “All optical image processing with a supranonlinear dye-doped liquid-crystal film,” Opt. Lett. 25, 978-980(2000). [CrossRef]
  12. M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001). [CrossRef]
  13. H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999). [CrossRef] [PubMed]
  14. C. Sudhir, B. Georges, and M. Andre, “4f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273-279 (2004). [CrossRef]
  15. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  16. K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002). [CrossRef]
  17. K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998). [CrossRef]
  18. M. Y. Shih, A. Shishido, and I. C. Khoo, “All optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition- substraction,” Opt. Lett. 26, 1140-1142 (2001). [CrossRef]
  19. S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005). [CrossRef]
  20. S. Y. Chandra, W. Pengfei, K. Sri-Rajasekhar, D. V. G. L. N. Rao, R. K. Brian, S. S. Sivasankara, R. Gowrisankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14, 6157-6171 (2006). [CrossRef] [PubMed]
  21. L. Junmin, X. Jingjun, Z. Guangyin, and L. Simin, “Synchronous acousto-optic tuning of free-space external-cavity lasers,” Appl. Opt. 34, 4972-4975 (1995). [CrossRef]
  22. C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008). [CrossRef] [PubMed]
  23. A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007). [CrossRef]
  24. M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  25. L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  27. F. L. S. Cuppo, A. M. F. Neto, and S. L. Gomez, “Thermal lens model compared with the Sheik-Bahae formalism in interpreting z-scan experiments on lyotropic liquid crystals,” J. Opt. Soc. Am. B 19, 1342-1348 (2002). [CrossRef]
  28. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976). [CrossRef]
  29. G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983). [CrossRef]
  30. J. Gluckstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268-282(2001). [CrossRef]
  31. D. Sanchez-de-la Llave and M. D. I. Castillo, “Inflence of illuminating beyond the object support on Zernike-type phase contrast filtering,” Appl. Opt. 41, 2607-2612 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited