OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 477–488

Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials

Guang-ming Dai, Charles E. Campbell, Li Chen, Huawei Zhao, and Dimitri Chernyak  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 477-488 (2009)
http://dx.doi.org/10.1364/AO.48.000477


View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

© 2009 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(220.2740) Optical design and fabrication : Geometric optical design
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 10, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: October 29, 2008
Published: January 13, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Guang-ming Dai, Charles E. Campbell, Li Chen, Huawei Zhao, and Dimitri Chernyak, "Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials," Appl. Opt. 48, 477-488 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-477

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited