OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 489–496

Applicability of moiré deflection tomography for diagnosing arc plasmas

Chen Yun-yun, Song Yang, He An-zhi, and Li Zhen-hua  »View Author Affiliations

Applied Optics, Vol. 48, Issue 3, pp. 489-496 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The argon arc plasma whose central temperature, 1.90 × 10 4 K , is used as a practical example for an experiment to research the applicability of moiré deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moiré deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80 × 10 3 K . The refractive-index gradient in moiré deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moiré deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moiré deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:
Imaging Systems

Original Manuscript: August 18, 2008
Revised Manuscript: October 29, 2008
Manuscript Accepted: November 22, 2008
Published: January 13, 2009

Chen Yun-yun, Song Yang, He An-zhi, and Li Zhen-hua, "Applicability of moiré deflection tomography for diagnosing arc plasmas," Appl. Opt. 48, 489-496 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Matulka, “The application of holographic interferometry to the determination of asymmetric three-dimensional density field in free jet flow,” AD-A174610 (1970).
  2. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moiré deflectometry,” Appl. Opt. 20, 4263-4266 (1981). [CrossRef] [PubMed]
  3. J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820-823 (1982). [CrossRef]
  4. R. Snyder and L. Hesselink, “Measurement of mixing fluid flows with optical tomography,” Opt. Lett. 13, 87-89 (1988). [CrossRef] [PubMed]
  5. Da-Peng Yan, An-Zhi He, and Xiao-Wu Ni, “New method of asymmetric flow field measurement in hypersonic shock tunnel,” Appl. Opt. 30, 770-774 (1991). [CrossRef] [PubMed]
  6. C. Söller, R. Wenskus, P. Middendorf, G. E. A. Meier, and F. Obermeier, “Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow,” Appl. Opt. 33, 2921-2932 (1994). [CrossRef] [PubMed]
  7. G. D. Kahl and E. H. Wedemeyer, “Interferometric analysis of axisymmetric plasma flow,” Phys. Fluids 7, 596-601 (1964). [CrossRef]
  8. A. J. Alcock and S. A. Ramsden, “Two wavelength interferometry of a laser-induced spark in air,” Appl. Phys. Lett. 8, 187-188 (1966). [CrossRef]
  9. R. A. Jeffries, “Two-wavelength holographic interferometry of partially ionized plasmas,” Phys. Fluids 13, 210-212 (1970). [CrossRef]
  10. R. J. Radley, Jr., “Two-wavelength holography for measuring plasma electron density,” Phys. Fluids 18, 175-179 (1975). [CrossRef]
  11. C. M. Vest, “Interferometry of strongly refracting axisymmetric phase objects,” Appl. Opt. 14, 1601-1606 (1975). [CrossRef] [PubMed]
  12. K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003). [CrossRef]
  13. G. W. Faris and R. L. Byer, “Beam-deflection optical tomography,” Opt. Lett. 12, 72-74 (1987). [CrossRef] [PubMed]
  14. G. W. Faris and R. L. Byer, “Beam-deflection optical tomography of a flame,” Opt. Lett. 12, 155-157 (1987). [CrossRef] [PubMed]
  15. G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202-5212 (1988). [CrossRef] [PubMed]
  16. G. W. Faris and H. Bergström, “Two-wavelength beam deflection technique for electron density measurements in laser-produced plasmas,” Appl. Opt. 30, 2212-2218(1991). [CrossRef] [PubMed]
  17. G. W. Faris, E. A. Brinkman, and J. B. Jeffries, “Density measurements in a DC arc jet using scanned beam deflection tomography,” Opt. Express 7, 447-460 (2000). [CrossRef] [PubMed]
  18. O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett. 5, 555-557 (1980). [CrossRef] [PubMed]
  19. S.-M. Jeng and D. R. Keefer, “Theoretical investigation of laser-sustained argon plasmas,” J. Appl. Phys. 60, 2272-2279 (1986). [CrossRef]
  20. Chen Yunyun, Song Yang, He Anzhi, and Li Zhenhua, “Temperature and density distribution measurement of flame by using of moiré deflection tomography,” Acta Optica Sinca (to be published).
  21. J. Stricker, “Diffraction effects and special advantages in electric heterodyne moiré deflectometry,” Appl. Opt. 25, 895-902 (1986). [CrossRef] [PubMed]
  22. F. J. Weinberg, Optics of Flames (Butterworths, 1963), Chap. 2, p. 23.
  23. Xue Haitao, Li Heng, and Liu Junyue, “Theoretical calculation of refraction index for arc plasma,” Chin. J. Mech. Eng. 40(8), 49-53 (2004) (in Chinese). [CrossRef]
  24. C. W. Allen, Astrophysical Quantities (Athlone, 1963).
  25. R. A. Alpher and D. R. White, “Optical refractivity of high-temperature gases. I. Effects resulting from dissociation of diatomic gases,” Phys. Fluids 2, 153-161(1959). [CrossRef]
  26. G. Zengyuan and Z. Wenhua, Arc and Thermal Plasma (Science, 1986), Chap. 2, p. 52.
  27. K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419-425 (2004). [CrossRef]
  28. B. H. Kolner, P. M. Conklin, R. A. Buckles, N. K. Fontaine, and R. P. Scott, “Time-resolved pulsed-plasma characterization using broadband terahertz pulses correlated with fluorescence imaging,” Appl. Phys. Lett. 87, 151501(2005). [CrossRef]
  29. J. You-Ming and F. You-San, The Physical Basis of Low Temperature Plasma (Tsinghua University, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited