OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 545–552

Synchrotron infrared reflectivity measurements of iron at high pressures

Christopher T. Seagle, Dion L. Heinz, Zhenxian Liu, and Russell J. Hemley  »View Author Affiliations

Applied Optics, Vol. 48, Issue 3, pp. 545-552 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The infrared reflectance of iron was studied using high-pressure synchrotron radiation methods up to 50 GPa at room temperature in a diamond anvil cell of 1000 8000 cm 1 ( 1.25 10 μm ). The magnitude of the reflectivity shows a weak pressure dependence up to the transition from the body centered cubic (α) to hexagonal close packed (ε) phase transition, where a discontinuous change in both the slope and magnitude of the reflectivity was observed. Reflectance spectra were corrected for diamond absorption and treated with a Kramers–Kronig analysis to extract the optical constants; the emissivity of iron was derived from Kirchoff’s law. The pressure and wavelength dependence of the emissivity is characterized by an empirical function for 1.5 1.9 μm ; this wavelength range is useful for spectroradiometric temperature measurements from 1000 K up to 2500 K . α - Fe is a nonideal emitter; however, ε - Fe behaves as an almost perfect greybody in the infrared up to the highest pressures of the measurements. Temperature measurements based on the spectroradiometry of iron samples should take into account the wavelength dependent emissivity below the α - ε phase transition at 13 GPa .

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(260.3060) Physical optics : Infrared

ToC Category:

Original Manuscript: September 24, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 5, 2008
Published: January 14, 2009

Christopher T. Seagle, Dion L. Heinz, Zhenxian Liu, and Russell J. Hemley, "Synchrotron infrared reflectivity measurements of iron at high pressures," Appl. Opt. 48, 545-552 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Ordal, P. M. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203-1209 (1988). [CrossRef] [PubMed]
  2. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. J. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985). [CrossRef] [PubMed]
  3. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  4. J. Fischera, “On the thermal behaviour of small iron grains,” Astron. Astrophys. 428, 99-108 (2004). [CrossRef]
  5. P. B. Johnson and R. W. Christy, “Optical constants of transition metals--Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056-5070 (1974). [CrossRef]
  6. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997). [CrossRef]
  7. J. E. Nestell and R. W. Christy, “Optical conductivity of bcc transition metals--V, Nb, Ta, Cr, Mo, W,” Phys. Rev. B 21, 3173-3179 (1980). [CrossRef]
  8. M. T. Ratajack, C. R. Kannewurf, J. F. Revelli, and J. B. Wagner, “Infrared reflectance spectra and dispersion studies of iron-intercalated zirconium diselenide,” Phys. Rev. B 17, 4674-4679 (1978). [CrossRef]
  9. M. Tokumoto and H. D. Drew, “Optical absorption of Mo-based alloys,” Phys. Rev. B 30, 4322-4328 (1984). [CrossRef]
  10. J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, “Low energy interband absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850-3856 (1979). [CrossRef]
  11. M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, “Optical properties of metallic silicon,” Phys. Rev. B 38, 12864-12867 (1988). [CrossRef]
  12. N. Nissim, S. Eliezer, L. Bakshi, L. Perelmutter, D. Moreno, E. Kot, G. K. Rozenberg, and M. P. Pasternak, “High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry,” J. Appl. Phys. 102, 106104 (2007). [CrossRef]
  13. A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki, “Unconventional superconductivity and non-Fermi liquid behavior of epsilon-iron at high pressure,” J. Phys. Condens. Matter 16, S1121-S1127 (2004). [CrossRef]
  14. D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki, “Superconductivity of epsilon-Fe: complete resistive transition,” Phys. Lett. A 299, 282-286 (2002). [CrossRef]
  15. D. L. Heinz and R. Jeanloz, “Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications,” J. Geophys. Res. 92, 11437-11444 (1987). [CrossRef]
  16. W. A. Bassett, T. Takahash, and P. W. Stook, “X-ray diffraction and optical observations on crystalline solids up to 300 Kbar,” Rev. Sci. Instrum. 38, 37-42 (1967). [CrossRef]
  17. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55, 8201-8206 (1997). [CrossRef]
  18. J. E. Taylor, “The variation with wavelength of the spectral emissivity of iron and molybdenum,” J. Opt. Soc. Am. 42, 33-36 (1952). [CrossRef]
  19. A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005). [CrossRef]
  20. D. M. Roessler, “Kramers-Kronig Analysis of Reflection Data,” Br. J. Appl. Phys. 16, 1119-1123 (1965). [CrossRef]
  21. S. Merkel, H. R. Wenk, P. Gillet, H. K. Mao, and R. J. Hemley, “Deformation of polycrystalline iron up to 30 GPa and 1000 K,” Phys. Earth Planet. Inter. 145, 239-251 (2004). [CrossRef]
  22. K. Pedersen and O. Keller, “Photoelastic properties of metals measured by off-null ellipsometry,” Appl. Opt. 25, 226-234(1986). [CrossRef] [PubMed]
  23. R. J. Hemley, H. K. Mao, G. Y. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hausermann, “X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures,” Science 276, 1242-1245 (1997). [CrossRef]
  24. D. W. Berreman, “Kramers-Kronig analysis of reflectance measured at oblique incidence,” Appl. Opt. 6, 1519-1521(1967). [CrossRef] [PubMed]
  25. F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: local structure from x-ray-absorption fine structure,” Phys. Rev. B 57, 5647-5654 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited