OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 566–572

Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy

Ovidio Peña, Luis Rodríguez-Fernández, Vladimir Rodríguez-Iglesias, Guinther Kellermann, Alejandro Crespo-Sosa, Juan Carlos Cheang-Wong, Héctor Gabriel Silva-Pereyra, Jesús Arenas-Alatorre, and Alicia Oliver  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 566-572 (2009)
http://dx.doi.org/10.1364/AO.48.000566


View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is proposed to estimate the size distribution of nearly spherical metallic nanoparticles (NPs) from optical extinction spectroscopy (OES) measurements based on Mie’s theory and an optimization algorithm. The described method is compared against two of the most widely used techniques for the task: transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS). The size distribution of Au and Cu NPs, obtained by ion implantation in silica and a subsequent thermal annealing in air, was determined by TEM, grazing-incidence SAXS (GISAXS) geometry, and our method, and the average radius obtained by all the three techniques was almost the same for the two studied metals. Concerning the radius dispersion (RD), OES and GISAXS give very similar results, while TEM considerably underestimates the RD of the distribution.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(300.1030) Spectroscopy : Absorption
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: November 14, 2008
Revised Manuscript: December 17, 2008
Manuscript Accepted: December 19, 2008
Published: January 15, 2009

Citation
Ovidio Peña, Luis Rodríguez-Fernández, Vladimir Rodríguez-Iglesias, Guinther Kellermann, Alejandro Crespo-Sosa, Juan Carlos Cheang-Wong, Héctor Gabriel Silva-Pereyra, Jesús Arenas-Alatorre, and Alicia Oliver, "Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy," Appl. Opt. 48, 566-572 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-566


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Tihay, G. M. Pourroy, A. C. Roger, and A. Kienneman, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. A 206, 29-42 (2001). [CrossRef]
  2. P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. Haglund, Jr., “Metal nanocluster formation by ion implantation in silicate glasses: nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater. 5, 285-330 (1996). [CrossRef]
  3. C. W. White, J. D. Budai, S. P. Withrow, J. G. Zhu, E. Souder, R. A. Zuhr, A. Meldrum, D. J. Hembree, Jr., D. O. Henderson, and S. Prawer, “Encapsulated semiconductor nanocrystals formed in insulators by ion beam synthesis,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 228-240 (1998). [CrossRef]
  4. E. Borsella, M. A. Garcia, G. Mattei, C. Maurizio, P. Mazzoldi, E. Cattaruzza, F. Gonella, G. Battaglin, A. Quaranta, and F. D'Acapito, “Synthesis of GaN quantum dots by ion implantation in dielectrics,” J. Appl. Phys. 90, 4467-4473 (2001). [CrossRef]
  5. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440-444(2000). [CrossRef] [PubMed]
  6. J. Yguerabide and E. E. Yguerabide, “Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications,” J. Cell. Biochem. Suppl. 84, 71-81 (2001). [CrossRef]
  7. C. Sünnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301-304 (2005). [CrossRef]
  8. A. Oliver, J. C. Cheang-Wong, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, A. Crespo-Sosa, and E. Muñoz, “Metallic nanoparticle formation in ion-implanted silica after thermal annealing in reducing or oxidizing atmospheres,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 333-336(2002). [CrossRef]
  9. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100, 044324 (2006). [CrossRef]
  10. L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158-163 (2005). [CrossRef]
  11. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027-5030 (1987). [CrossRef]
  12. M. V Roldán, L. B. Scaffardi, O. de Sanctis, and N. Pellegri, “Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles,” Mater. Chem. Phys. 112, 984-990 (2008). [CrossRef]
  13. J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comput. 35, 773-782 (1980). [CrossRef]
  14. R. H. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci. Statist. Comput. 16, 1190-1208 (1995). [CrossRef]
  15. C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997). [CrossRef]
  16. M. J. Weber, ed., Handbook of Optical Materials (CRC , 2003).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” submitted to Comput. Phys. Commun.
  19. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710-1720 (2003). [CrossRef] [PubMed]
  20. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  21. R. Lazzari, “IsGISAXS: a program for grazing-incidence small-angle x-ray scattering analysis of supported islands,” J. Appl. Crystallogr. 35, 406-421 (2002). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  23. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371-1379(2008). [CrossRef]
  24. F. Gonella, “Nanoparticle formation in silicate glasses by ion-beam-based methods,” Nucl. Instrum. Methods Phys. Res. Sect. B 166, 831-839 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited