OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5678–5682

Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference- frequency-generation process

Ritwick Das and K. Thyagarajan  »View Author Affiliations


Applied Optics, Vol. 48, Issue 30, pp. 5678-5682 (2009)
http://dx.doi.org/10.1364/AO.48.005678


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel scheme for ultrabroadband midinfrared (mid-IR) generation using quasi-phase-matched difference-frequency generation (DFG) in a Ga N / Al x Ga 1 x N based Bragg reflection waveguide (BRW). By optimally tailoring the phase- and group-velocity dispersion properties of symmetric BRWs, we show that the phase-matching condition for a DFG process could be maintained over a broad range of signal wavelengths. This could lead to generation of an 700 nm broad idler close to 3.26 μm wavelength. Since the idea is based on dispersion compensation using photonic bandgap geometry, we can shift the broadband features to any desired spectral region and for any material system within the constraints imposed by the transparency of nonlinear materials. We also investigate the possibility of broadband mid-IR generation using pump sources with broad spectral width.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.7390) Optical devices : Waveguides, planar
(190.4975) Nonlinear optics : Parametric processes
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: August 19, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 25, 2009
Published: October 12, 2009

Citation
Ritwick Das and K. Thyagarajan, "Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference-frequency-generation process," Appl. Opt. 48, 5678-5682 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-30-5678


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269-1277 (2008). [PubMed]
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000). [CrossRef]
  3. D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005). [CrossRef]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifier,” Rev. Sci. Instrum. 74, 1-18 (2003). [CrossRef]
  5. E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991). [CrossRef]
  6. T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005). [CrossRef]
  7. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15, 15035-15040 (2007). [CrossRef] [PubMed]
  8. O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008). [CrossRef]
  9. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71-73 (2006). [CrossRef] [PubMed]
  10. A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002). [CrossRef]
  11. Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008). [CrossRef]
  12. D. Brida, M. Marangoni, C. Manzoni, S. De Silvestri, and G. Cerullo, “Two optical cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33, 2901-2903(2008). [CrossRef] [PubMed]
  13. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976). [CrossRef]
  14. B. R. West and A. S. Helmy, “Dispersion tailoring of the quarter-wave Bragg reflection waveguide,” Opt. Express 14, 4073-4086 (2006). [CrossRef] [PubMed]
  15. N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005). [CrossRef]
  16. S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005). [CrossRef]
  17. A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003). [CrossRef]
  18. I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008). [CrossRef]
  19. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987). [CrossRef]
  20. A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  21. B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006). [CrossRef]
  22. M. C. Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi phase-matching gratings I: Practical design formulas,” J. Opt. Soc. Am. B 25, 463-480(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited