OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5683–5691

Propagation length of surface plasmons in a metal film with roughness

Andrei Kolomenski, Alexandre Kolomenskii, John Noel, Siying Peng, and Hans Schuessler  »View Author Affiliations

Applied Optics, Vol. 48, Issue 30, pp. 5683-5691 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of laser-excited surface plasmons along a gold film with surface roughness is directly observed via scattered light. The attenuation length of surface plasmons in a broad wavelength interval is calculated for smooth gold and silver films. The surface roughness, which was characterized with an AFM, introduces corrections to the attenuation length, angular dependence of the surface plasmon resonance, and the effective dielectric constant of the metal film. These corrections are also taken into account and discussed.

© 2009 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.5770) Optics at surfaces : Roughness
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 6, 2009
Revised Manuscript: September 2, 2009
Manuscript Accepted: September 4, 2009
Published: October 12, 2009

Andrei Kolomenski, Alexandre Kolomenskii, John Noel, Siying Peng, and Hans Schuessler, "Propagation length of surface plasmons in a metal film with roughness," Appl. Opt. 48, 5683-5691 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31, 213-221 (1941). [CrossRef]
  3. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957). [CrossRef]
  4. H. Raether and E. Kretschmann, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135-2136 (1968).
  5. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflaechenplasmaschwingungen,” Z. Phys. 241, 313-324 (1971). [CrossRef]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  7. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståhlberg, C. Urbaniczky, H. Östlin, and M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620-627 (1991).
  8. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69, 4939-4947 (1997). [CrossRef]
  9. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005). [CrossRef]
  10. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611-1625 (2006). [CrossRef]
  11. S. Negm and H. Talaat, “Surface plasmon resonance halfwidths as measured using attenuated total reflection, forward scattering and photoacoustics,” J. Phys. Condens. Matter 1, 10201-10205 (1989). [CrossRef]
  12. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30, 884-886 (2005). [CrossRef]
  13. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404-405 (2002). [CrossRef]
  14. P. Dawson, F. de Fornel, and J-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927(1994). [CrossRef]
  15. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185-187(1972). [CrossRef]
  16. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12, 4036-4046 (1975). [CrossRef]
  17. E. Kretschmann, “The angular dependence and the polarization of light emitted by surface plasmons on metals due to roughness,” Opt. Commun. 5, 331-336 (1972). [CrossRef]
  18. A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392-1415(1975). [CrossRef]
  19. A. Hoffmann, Z. Lenkefi, and Z. Szentirmay, “Effect of roughness on surface plasmon scattering in gold films,” J. Phys. Condens. Matter 10, 5503-5513 (1998). [CrossRef]
  20. H. Kano and S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166-5170 (1994). [CrossRef]
  21. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314-3320 (2000). [CrossRef]
  22. G. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), pp. 143-197.
  23. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed.(Academic, 1980).
  24. C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, and I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 62, 1674-1676 (1975). [CrossRef]
  25. P. Dawson, B. A. F. Puygranier, and J-P. Goudonnet, “Surface plasmon polariton propagation length: a direct comparison using photon scanning tunneling microscopy and attenuated total reflection,” Phys. Rev. B 63, 205410 (2001). [CrossRef]
  26. E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Stat. Sol. (B) 76, 515-523 (1976). [CrossRef]
  27. F. Toigo, A. Marvin, V. Celli, and N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15, 5618-5626 (1977). [CrossRef]
  28. S. O. Sari, D. K. Coben, and K. D. Scherkoske, “Study of surface plasma-wave reflectance and roughness-induced scattering in silver foils,” Phys. Rev. B 21, 2162-2174 (1980). [CrossRef]
  29. E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164-3182 (1988). [CrossRef]
  30. American Institute of Physics Handbook, D. E. Gray, ed. (McGraw-Hill, 1972), p. 105.
  31. U. Schröder, “Der einfluss dünner metallischer deckschichten auf die dispersion von oberflaechenplasmaschwingungen in gold-silber-schichtsystemen,“ Surf. Sci. 102, 118-130(1981). [CrossRef]
  32. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  33. The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer, 1995), pp. 4-9.
  34. H. Raether, “The dispersion relation of surface plasmons on rough surfaces; a comment on roughness data,” Surf. Sci. 125, 624-634 (1983). [CrossRef]
  35. M. U. Gonzalez, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45°surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416(2006). [CrossRef]
  36. W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186 (1989). [CrossRef]
  37. T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometryAppl. Opt. 46, 1575-1582 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited