Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of two dimensional refractive index profiles of channel waveguides using an interferometric technique

Not Accessible

Your library or personal account may give you access

Abstract

Two dimensional refractive index profiles of ion exchanged channel waveguides in glass have been measured using an interferometric method. In order to obtain depth data, a shallow bevel is produced in the glass by polishing. A regularization algorithm for the extraction of the phase data from the interferometer image is presented. The method is applied to waveguides formed by the electric field assisted diffusion of Cu+ ions into a borosilicate glass. The index change obtained from the interferometer is in good agreement with that obtained from measurements on planar waveguides.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.