OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5733–5740

Liquid tunable double-focus lens fabricated with diamond cutting and soft lithography

Hui Min Leung, Guangya Zhou, Hongbin Yu, Fook Siong Chau, and A. Senthil Kumar  »View Author Affiliations

Applied Optics, Vol. 48, Issue 30, pp. 5733-5740 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the use of diamond cutting processes, namely turning and shaping, followed by soft lithography with polydimethylsiloxane, a liquid tunable double-focusing lens is fabricated. Data from a mechanical profiler verified that the dimensions of the features of the lens device adhere well to designed values. In addition, atomic force microscopy results show that this method of fabrication is able to produce multiple replicas of the lens device with a high-quality surface finish that is suitable for optical purposes. Lastly, the tunability of the lens is demonstrated, with experimental results agreeing well with simulation results.

© 2009 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1920) Optical design and fabrication : Diamond machining
(230.0230) Optical devices : Optical devices
(080.4225) Geometric optics : Nonspherical lens design
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 3, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 23, 2009
Published: October 13, 2009

Hui Min Leung, Guangya Zhou, Hongbin Yu, Fook Siong Chau, and A. Senthil Kumar, "Liquid tunable double-focus lens fabricated with diamond cutting and soft lithography," Appl. Opt. 48, 5733-5740 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liesener, L. Seifert, H. J. Tiziani, and W. Osten, “Active wavefront sensing and wavefront control with SLMs,” Proc. SPIE 5532, 147-158 (2004). [CrossRef]
  2. W. M. Trott, R. E. Setchell, J. N. Castaneda, and D. M. Berry, “Evaluation of a diffractive, microlens array beam shaper for use in acceleration of laser-driven flyers,” Proc. SPIE 4443, 166-177 (2001).
  3. L. Wu and H. Xie, “A lateral-shift-free LVD microlens scanner for confocal microscopy,” in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2007), pp. 141-142. [CrossRef]
  4. T. Dillon, E. Marchena, C. Caihua, D. Brady, and D. Prather, “Microlens fabrication using HEBS glass for compact high-resolution IR imaging system,” Proc. SPIE 6327, 63270B(2006). [CrossRef]
  5. A. Jain and X. Huikai, “Microendoscopic confocal imaging probe based on an LVD microlens scanner,” IEEE J. Sel. Top. Quantum Electron. 13, 228-234 (2007). [CrossRef]
  6. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004). [CrossRef]
  7. C.-S. Lee and C.-H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sens. Actuators A Phys. 88, 87-90 (2001). [CrossRef]
  8. S.-Y. Hung, C.-P. Lin, H. Yang, and Y.-P. Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Opt. Eng. 46, 043401(2007). [CrossRef]
  9. W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330-337 (2004). [CrossRef]
  10. T. Shiono and K. Setsune, “Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development,” Opt. Lett. 15, 84-86 (1990). [CrossRef] [PubMed]
  11. K. Naessens, P. Van Daele, and R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” Proc. SPIE 4941, 133-139 (2003). [CrossRef]
  12. F. Erlsmann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988-991 (1997). [CrossRef]
  13. N. M. Ganzherli, S. N. Gulyaev, I. A. Maurer, and D. F. Chernykh, “Phase recording for formation of holographic optical elements on silver-halide photographic emulsions,” Proc. SPIE 7358, 735817 (2009). [CrossRef]
  14. S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24, L626-L628(1985). [CrossRef]
  15. F. Krogmann, W. Monch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A Pure Appl. Opt. 8, S330-S336 (2006). [CrossRef]
  16. S.-K. Hsiung and G.-B. Lee, “A controllable micro-lens structure for bio-analytical applications,” in IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 763-766. [CrossRef]
  17. H. Yu, G. Zhou, S. C. Fook, F. Lee, and S. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18, 105017 (2008). [CrossRef]
  18. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782-4790 (2009). [CrossRef] [PubMed]
  19. P.-Y. Liu, H. P. D. Shieh, J.-J. Ju, S.-T. Tsai, T.-M. Yang, T.-K. Chang, and J.-S. Liu, “A novel dual focus objective lens for DVD/CD pick-up head,” IEEE Trans. Magn. 34, 462-464(1998). [CrossRef]
  20. S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” Appl. Opt. 39, 2321-2325 (2000). [CrossRef]
  21. K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa, and M. Maeda, “Microgrooving on electroless nickel plated materials using a single crystal diamond tool,” Int. J. Adv. Manuf. Technol. 27, 911-917 (2006). [CrossRef]
  22. T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra-precision micro structuring by means of mechanical machining,” in 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 22-5.
  23. L. Lei, A. Y. Yi, H. Chunning, D. A. Grewell, A. Benatar, and C. Yang, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45, 113401 (2006). [CrossRef]
  24. J. W. Carr and C. Feger, “Ultraprecision machining of polymers,” Precis. Eng. 15, 221-237 (1993). [CrossRef]
  25. F. C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, and B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings,” Surf. Coat. Technol. 202, 5092-5102 (2008). [CrossRef]
  26. C. C. A. Chen, C.-M. Chen, and J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” J. Mater. Process. Technol. 192-193, 194-199 (2007). [CrossRef]
  27. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28153-184 (1998). [CrossRef]
  28. T.-K Shih, C.-F Chen, J.-R Ho, and F.-T Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83, 2499-2503 (2006). [CrossRef]
  29. C. Thibault, C. Severac, E. Trevisiol, and C. Vieu, “Microtransfer molding of hydrophobic dendrimer,” Microelectron. Eng. 83, 1513-1516 (2006). [CrossRef]
  30. K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894-1903 (2005). [CrossRef]
  31. D.-Y. Zhang, V. Lien, Y. Berdichevsky, C. Jaehyuck, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003). [CrossRef]
  32. J. Chen, W. Weisong, F. Ji, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004). [CrossRef]
  33. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116 (2000). [CrossRef]
  34. Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sens. Actuators B Chem. 137, 754-761 (2009). [CrossRef]
  35. S. Burgmann, S. Grosse, W. Schröder, J. Roggenkamp, S. Jansen, F. Gräf, and M. Büsen,, “A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance,” Exp. Fluids (to be published). [CrossRef]
  36. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007). [CrossRef] [PubMed]
  37. R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405-408 (2005). [CrossRef]
  38. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658-3668 (2008). [CrossRef] [PubMed]
  39. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited