OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 5889–5896

Improvement of the light extraction efficiency of top-emitting organic light-emitting diodes by a two-dimensional diffraction layer fabricated using self-assembled nanoparticles

Tsutomu Nakanishi, Toshiro Hiraoka, Akira Fujimoto, Shigeru Matake, Satoshi Okutani, Hiroshi Sano, and Koji Asakawa  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 5889-5896 (2009)
http://dx.doi.org/10.1364/AO.48.005889


View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) was improved by insertion of a two-dimensional (2D) diffraction layer. The 2D diffraction layer was fabricated by our original nanofabrication technique, the embedded particle monolayer method, which could form a self-assembled particle monolayer. As a result, the electroluminescence intensity of the device with the 2D diffraction layer was improved by 1.67 times (in total luminous flux) and 2.07 times (in peak wavelength). High luminance top-emitting OLEDs were fabricated using the potentially low-cost self-assembling technique.

© 2009 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

History
Original Manuscript: July 15, 2009
Revised Manuscript: October 3, 2009
Manuscript Accepted: October 6, 2009
Published: October 20, 2009

Citation
Tsutomu Nakanishi, Toshiro Hiraoka, Akira Fujimoto, Shigeru Matake, Satoshi Okutani, Hiroshi Sano, and Koji Asakawa, "Improvement of the light extraction efficiency of top-emitting organic light-emitting diodes by a two-dimensional diffraction layer fabricated using self-assembled nanoparticles," Appl. Opt. 48, 5889-5896 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-5889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987). [CrossRef]
  2. J. N. Bardsley, “International OLED technology roadmap,” IEEE Sel. Top. Quantum Electron. 10, 3-9 (2004). [CrossRef]
  3. C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000). [CrossRef]
  4. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002). [CrossRef]
  5. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000). [CrossRef]
  6. M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007). [CrossRef]
  7. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003). [CrossRef]
  8. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004). [CrossRef]
  9. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005). [CrossRef]
  10. Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006). [CrossRef]
  11. S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008). [CrossRef]
  12. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006). [CrossRef]
  13. K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005). [CrossRef] [PubMed]
  14. C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993). [CrossRef]
  15. M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999). [CrossRef]
  16. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants (HOC) Vol. II(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited