OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 5933–5947

Double random phase encryption scheme to multiplex and simultaneous encode multiple images

Ayman Alfalou and Ali Mansour  »View Author Affiliations

Applied Optics, Vol. 48, Issue 31, pp. 5933-5947 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2802 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we present a new approach of multiplexing and simultaneous encoding of target images. Our approach can enhance the encryption level of a classical double random phase (DRP) encryption system by adding a supplementary security layer. The new approach can be divided into two security layers. The first layer is called the multiplexing level, which consists in using iterative Fourier transformations along with several encryption key images. These latter can be a set of biometric images. At the second layer, we use a classical DRP system. The two layers enable us to encode several target images (multi-encryption) and to reduce, at the same time, the requested decoded information (transmitted or storage information).

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4560) Fourier optics and signal processing : Data processing by optical means
(100.2000) Image processing : Digital image processing
(200.4560) Optics in computing : Optical data processing

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: March 24, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 18, 2009
Published: October 22, 2009

Ayman Alfalou and Ali Mansour, "Double random phase encryption scheme to multiplex and simultaneous encode multiple images," Appl. Opt. 48, 5933-5947 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  2. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629-2638 (1998). [CrossRef]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000). [CrossRef]
  4. S. Kishk and B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt. 41, 5462-5470(2002). [CrossRef] [PubMed]
  5. L. G. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35, 2459-2463 (1996). [CrossRef]
  6. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915-1927 (1999). [CrossRef]
  7. G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193, 51-67 (2001). [CrossRef]
  8. B. Javidi and N. Takanori, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000). [CrossRef]
  9. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  10. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584-1586 (2004). [CrossRef] [PubMed]
  11. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999). [CrossRef]
  12. J. F. Barrera, R. Henao, M. Tebaldi, N. Bolognini, and R. Torroba, “Multiple image encryption using an aperture-modulated optical system,” Opt. Commun. 261, 29-33 (2006). [CrossRef]
  13. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288-7293 (1999). [CrossRef]
  14. J. F. Barrera, R. Henao, M. Tebaldi, N. Bolognini, and R. Torroba, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109-112 (2006). [CrossRef]
  15. L. Cai, M. He, Q. Liu, and X. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43, 3078-3084 (2004). [CrossRef] [PubMed]
  16. M. He, L. Cai, Q. Liu, and X. Yang, “Phase-only encryption and watermarking based on phase-shifting interferometry,” Appl. Opt. 44, 2600-2606 (2005). [CrossRef] [PubMed]
  17. Z. Xin, Y. S. Wei, and X. Jian, “Affine cryptosystem of double-random-phase encryption based on the fractional Fourier transform,” Appl. Opt. 45, 8434-8439 (2006). [CrossRef] [PubMed]
  18. B. M. Hennelly and J. T. Sheridan, “Image encryption techniques based on fractional Fourier transform,” Proc. SPIE 5202, 76-87 (2003). [CrossRef]
  19. Z. Liu and S. Liu, “Double image encryption based on iterative fractional Fourier transform,” Opt. Commun. 275, 324-329(2007). [CrossRef]
  20. M. Z. He, L. Z. Cai, Q. Liu, X. C. Wang, and X. F. Meng, “Multiple image encryption and watermarking by random phase matching,” Opt. Commun. 247, 29-37 (2005). [CrossRef]
  21. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253-10265 (2007). [CrossRef] [PubMed]
  22. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644-1646 (2005). [CrossRef] [PubMed]
  23. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044-1046 (2006). [CrossRef] [PubMed]
  24. G. B. Folland, Fourier Analysis and Its Applications (Brooks/Cole, 1992).
  25. M. A. Pinsky, Introduction to Fourier Analysis and Wavelets (Brooks/Cole, 2002).
  26. C. Ioana, A. Mansour, A. Quinquis, and E. Radoi, Digital Signal Processing Using MATLAB (Wiley Science, 2008).
  27. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006). [CrossRef] [PubMed]
  28. J. E. Rubio, “The global control of nonlinear diffusion equations,” SIAM J. Cont. Optim. 33, 308-322, 1995). [CrossRef]
  29. H. L. Langhaar, Energy Methods in Applied Mechanics (Wiley, 1962).
  30. T. J. Asaki, P. R. Campbell, R. Chartrand, C. E. Powell, K. R. Vixie, and B. Wohlberg, “Abel inversion using total variation regularization: applications,” Inv. Probl. Sci. Eng. 14, 873-885(2006). [CrossRef]
  31. J. Van Kan, A. Segal, and F. Vermolen, Numerical Methods in Scientific Computing (VSSD, 2006).
  32. K. Atkinson and W. Han, Theoretical Numerical Analysis (Springer-Verlag, 2001).
  33. A. R. Alghofari, “Problems in analysis related to satellites,” Ph.D. dissertation (The University of New South Wales, 2005).
  34. A. Alfalou and C. Brosseau “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(2009), to be published. [CrossRef]
  35. S. Soualmi, A. Alfalou, and H. Hamam, “Optical image compression based on segmentation of the Fourier plane: new approaches and critical analysis,” J. Opt. A Pure Appl. Opt. 9, 73-80 (2007). [CrossRef]
  36. A. Alfalou and A. Mansour, “Simultaneous multiplexing and encoding of multiple images based on a double random phase encryption system,” Proc. SPIE 7486, 74860L (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited