OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 5978–5983

Numerical and experimental investigation of a continuous-wave and passively mode-locked Yb:YAG laser at a wavelength of 1.05 μm

Binbin Zhou, Zhiyi Wei, Dehua Li, Hao Teng, and Gilbert L. Bourdet  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 5978-5983 (2009)
http://dx.doi.org/10.1364/AO.48.005978


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of a novel numerical and experimental investigation aimed at obtaining efficient 1.05 μm operation with a Yb:YAG laser. The model shows that the emitting wavelength of the Yb:YAG laser is affected by the combination of length and doping concentration of the gain medium. Efficient continuous-wave laser operation at the wavelength of 1050 nm was experimentally obtained in good agreement with the model predictions. Based on continuous-wave operation, generation of 1.8 ps laser pulses at the central wavelength of 1050 nm , as well as 170 fs laser pulses at the central wavelength of 1053 nm , were realized.

© 2009 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 13, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: October 12, 2009
Published: October 26, 2009

Citation
Binbin Zhou, Zhiyi Wei, Dehua Li, Hao Teng, and Gilbert L. Bourdet, "Numerical and experimental investigation of a continuous-wave and passively mode-locked Yb:YAG laser at a wavelength of 1.05 μm," Appl. Opt. 48, 5978-5983 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-5978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics: a powerful combination,” Laser Phys. Lett. 1, 82-85(2004). [CrossRef]
  2. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397-6407(2008). [CrossRef] [PubMed]
  3. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726-728 (2008). [CrossRef] [PubMed]
  4. S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express 1, 012007 (2008) [CrossRef]
  5. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3-17 (1999). [CrossRef]
  6. C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402-2404 (1995). [CrossRef] [PubMed]
  7. M. Weitz, S. Reuter, R. Knappe, R. Wallenstein, and B. Henrich, “Passive mode-locked 21 W femtosecond Yb:YAG laser with 124 MHz repetition-rate, ” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CtuCC.
  8. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser, ” Opt. Lett. 25, 859-861(2000). [CrossRef]
  9. S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys. 44, L361-L363 (2005). [CrossRef]
  10. S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tenability in an external cavity,” J. Lumin. 60-61, 647-650 (1994). [CrossRef]
  11. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995). [CrossRef]
  12. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966-971 (2000). [CrossRef]
  13. G. L. Bourdet and E. Bartnicki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203-9209 (2006). [CrossRef] [PubMed]
  14. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited