OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G1–G5

Gas sensors based on superluminescent diodes for combustion monitoring

Nilesh J. Vasa and Makaram Singaperumal  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G1-G5 (2009)
http://dx.doi.org/10.1364/AO.48.0000G1


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Application of fiber-coupled superluminescent diodes with a wideband optical source for the detection of various gases is reported. Superluminescent diodes with two different wavelengths around 760 and 1530 nm are used for O 2 and NH 3 gas sensing, respectively. The technique allows multiple-gas sensing for combustion monitoring.

© 2009 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: April 13, 2009
Manuscript Accepted: May 15, 2009
Published: June 12, 2009

Citation
Nilesh J. Vasa and Makaram Singaperumal, "Gas sensors based on superluminescent diodes for combustion monitoring," Appl. Opt. 48, G1-G5 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hielscher, C. E. Miler, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, “Optimization of a midinfrared high-resolution difference frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962-1967 (1992). [CrossRef]
  2. L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency-generation of tunable midinfrared radiation in bulk periodically poled LiNbO2,” Opt. Lett. 20, 1280-1282 (1995). [CrossRef] [PubMed]
  3. K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 μm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567-572 (1997). [CrossRef]
  4. D. Richter, D. G. Lanaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO2,” Appl. Phys. B 67, 347-350 (1998). [CrossRef]
  5. D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. D. Natale, “Low-power Lamb-dip spectroscopy of very weak CO2 transitions near 4.25 μm,” Opt. Lett. 27, 1256-1258 (2002). [CrossRef]
  6. N. J. Vasa, K. Funakoshi, and S. Yokoyama, “Development of a widely tunable mid-infrared coherent optical source based on a difference frequency generation in a periodically poled LiNbO2,” Eng. Sci. Rep. 26, 389-394 (2005).
  7. N. Matsuoka, S. Yamaguchi, K. Nanri, T. Fujioka, D. Richter, and F. K. Tittel, “Yb fiber laser pumped Mid-IR source based on difference frequency generation and its application to ammonia detection,” Jpn. J. Appl. Phys. 40, 625-628(2001). [CrossRef] [PubMed]
  8. H. Parhat, N. J. Vasa, T. Okada, M. Maeda, and H. Taniguchi, “Widely tunable difference frequency generation in periodically-poled LiNbO2 using an all-solid-state Cr3+∶LiSrAlF6 laser,” Jpn. J. Appl. Phys. 39, L800-L802 (2000). [CrossRef]
  9. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J. 76, 151-159 (2004). [CrossRef]
  10. J. Uotila and J. Kauppinen, “Fourier transform infrared measurement of solid-, liquid-, and gas-phase samples with a single photoacoustic cell,” Appl. Spectrosc. 62, 655-660(2008). [CrossRef] [PubMed]
  11. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327-338 (1998). [CrossRef]
  12. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection--from concept to system realization,” Sens. Actuators B 51, 25-37 (1998). [CrossRef]
  13. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-814 (1992). [CrossRef] [PubMed]
  14. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998). [CrossRef]
  15. L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400-6900 cm−1,” J. Mol. Spectrosc. 162, 230-245 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited