OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G106–G113

Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence, dispersion, and supercontinuum generation properties

Sourabh Roy, Kajal Mondal, and Partha Roy Chaudhuri  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G106-G113 (2009)
http://dx.doi.org/10.1364/AO.48.00G106


View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of tapering fabricated air–silica photonic crystal fibers (PCFs) by tailoring the key modal and nonlinear properties of PCFs have been studied by analyzing the tapered structure using a finite difference mode calculation algorithm. The process of tapering is simulated through repeatedly redefining the geometry of the fiber cross section in a progressively tapered dimension preserving the shape. We tested the performance of the analysis by evaluating the modal characteristics, namely, the mode-effective area, birefringence, dispersion, nonlinearity, and supercontinuum properties of some well-known PCF examples under successive tapered conditions. Tapering, as an additional parameter, is seen to improve birefringence of a typical high-birefringence PCF by 1 order of magnitude. The analysis also estimates the extent of tapering that is required to achieve a target amount of evanescent field that has potential applications in an evanescent field sensor. Our investigation with tapered PCF structures includes tailoring dispersion properties and increasing nonlinearity, which leads to broader and lower threshold supercontinuum generation. The analysis should, therefore, be useful as a ready technique for taper analysis of any arbitrary structure PCF and also in PCF-preform (stacking structure) analysis, which can provide preestimates of properties in a targeted dimension of the final PCF before drawing.

© 2009 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

History
Original Manuscript: July 1, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 18, 2009
Published: October 14, 2009

Citation
Sourabh Roy, Kajal Mondal, and Partha Roy Chaudhuri, "Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence, dispersion, and supercontinuum generation properties," Appl. Opt. 48, G106-G113 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G106


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992). [CrossRef]
  2. C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243-244 (1988). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963(1997). [CrossRef] [PubMed]
  5. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1099 (1999). [CrossRef]
  6. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc Am. A 15, 748-752 (1998). [CrossRef]
  7. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81, 377-387 (2005). [CrossRef]
  8. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697-699 (2004). [CrossRef] [PubMed]
  9. P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315-320 (2003). [CrossRef]
  10. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026-4036 (2006). [CrossRef] [PubMed]
  11. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596-1603 (2006). [CrossRef] [PubMed]
  12. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  13. D. Turke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006). [CrossRef]
  14. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  15. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976-3982 (2004). [CrossRef]
  16. P. Roy Chaudhuri, and S. Roy, “Determining properties of fabricated index-guiding photonic crystal fibers using SEM micrograph and mode convergence algorithm,” J. Lightwave Technol. 26, 379-386 (2008). [CrossRef]
  17. P. Roy Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quantum Electron. 39, 221-237 (2007). [CrossRef]
  18. S. Roy and P. Roy Chaudhuri, “Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite difference formulation,” IEEE J. Quantum Electron. 45, 345-350 (2009). [CrossRef]
  19. M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. 135 (J), 56-63 (1988).
  20. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  21. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341-348 (2002). [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  23. P. Roy Chaudhuri, “Mode calculation of optical waveguides by perturbed field convergence method,” in Proceedings of the Seventh Optoelectronics and Communications Conference (OECC, 2002), 11B3-4, pp. 448-449.
  24. F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135-S149 (1994). [CrossRef]
  25. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773-779 (2000). [CrossRef]
  26. S. Roy and P. Roy Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun. 282, 3448-3455 (2009). [CrossRef]
  27. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006). [CrossRef] [PubMed]
  28. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. Riis Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  29. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004). [CrossRef]
  30. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  31. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  32. PM Highly nonlinear PCF, PM-NL-3.0-850, Blaze Photonics, Bath, UK.
  33. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986). [CrossRef]
  34. J. M. Dudley, G. Genty, S. Coen, “Super-continuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited