OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G148–G155

Linear transmission properties of a vertically stacked multiring resonator with a defect

Mehdi Shafiei, Mohammad Khanzadeh, Mohammad Agha-Bolorizadeh, and Reza Farrahi Moghaddam  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G148-G155 (2009)
http://dx.doi.org/10.1364/AO.48.00G148


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The linear characteristics of a vertically stacked multiring resonator (VMR) that can support a photonic bandgap with a defect located at the middle of the structure are investigated numerically. Initially, the spectral transfer characteristics of the uniform structure are studied. Then, the transmission properties of the VMR structure possessing a defect are investigated. The defect is realized by varying the waveguide width of one of the rings in the VMR chain. Finally, the existence of defect modes in the linear periodic array is numerically demonstrated by solving the corresponding coupled wave equations. Numerical results predict a high quality factor (Q) of up to 1.6 × 10 5 for this microcavity. We also show that our microcavity has a good insensitivity of quality factor to geometric imperfections.

© 2009 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

History
Original Manuscript: June 15, 2009
Revised Manuscript: October 10, 2009
Manuscript Accepted: October 12, 2009
Published: October 26, 2009

Citation
Mehdi Shafiei, Mohammad Khanzadeh, Mohammad Agha-Bolorizadeh, and Reza Farrahi Moghaddam, "Linear transmission properties of a vertically stacked multiring resonator with a defect," Appl. Opt. 48, G148-G155 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G148


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and M. A. Muriel, “A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing,” J. Lightwave Technol. 8, 1904-1919 (1990). [CrossRef]
  2. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002). [CrossRef]
  3. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65-71 (2007). [CrossRef]
  4. H. Tazawa and W. H. Steier, “Analysis of ring resonator-based traveling-wave modulators,” IEEE Photon. Technol. Lett. 18, 211-213 (2006).
  5. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
  6. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323-325 (2000).
  7. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000). [CrossRef]
  8. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818-1832 (2004). [CrossRef]
  9. J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupledresonator optical waveguides,” Opt. Express 12, 90-103 (2004). [CrossRef]
  10. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
  11. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  12. M. Sumetsky, “Vertically-stacked multiring resonator,” Opt. Express 13, 6354-6375 (2005). [CrossRef]
  13. C. Li, N. Ma, and A. W. Poon, “Waveguide-coupled octagonal microdisk channel add-drop filters,” Opt. Lett. 29, 471-473(2004). [CrossRef]
  14. V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19, 1734-1739(2001). [CrossRef]
  15. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149(1997). [CrossRef]
  16. Y. M. Landobasa and M. K. Chin, “Defect modes in microring resonator arrays,” Opt. Express 13, 7800-7815 (2005). [CrossRef]
  17. A. W. Snyder, “Coupled mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267-1277 (1972). [CrossRef]
  18. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288-290 (1982). [CrossRef]
  19. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004). [CrossRef]
  20. J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13, 1780-1796 (2005). [CrossRef]
  21. A. Yariv, Optical Electronics (Saunders, 1991), Chap. 4.
  22. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090 (2007). [CrossRef]
  23. Ph. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458-567(2004). [CrossRef]
  24. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005). [CrossRef]
  25. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005). [CrossRef]
  26. S. T. Hanic, C. M. d. Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q. cavities in multilayer photonic crystal slabs,” Opt. Express 15, 17248 (2007). [CrossRef]
  27. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002).
  28. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253(1998).
  29. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near infrared wavelengths,” Science 289, 604-606 (2000). [CrossRef]
  30. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56(2000).
  31. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography:fabrication, optical characterization and band-structure calculations,” Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  32. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-Li Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for 3D optical data storage and microfabrication,” Nature 398, 51-54 (1999).
  33. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698(2001).
  34. F. Xu and G. Brambilla, “embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164-2166(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited