OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6120–6131

Around-the-objective total internal reflection fluorescence microscopy

Thomas P. Burghardt, Andrew D. Hipp, and Katalin Ajtai  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6120-6131 (2009)
http://dx.doi.org/10.1364/AO.48.006120


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Total internal reflection fluorescence (TIRF) microscopy uses the evanescent field on the aqueous side of a glass/aqueous interface to selectively illuminate fluorophores within 100 nm of the interface. Applications of the method include epi-illumination TIRF, where the exciting light is refracted by the microscope objective to impinge on the interface at incidence angles beyond critical angle, and prism-based TIRF, where exciting light propagates to the interface externally to the microscope optics. The former has higher background autofluorescence from the glass elements of the objective where the exciting beam is focused, and the latter does not collect near-field emission from the fluorescent sample. Around-the- objective TIRF, developed here, creates the evanescent field by conditioning the exciting laser beam to propagate through the submillimeter gap created by the oil immersion high numerical aperture objective and the glass coverslip. The approach eliminates background light due to the admission of the laser excitation to the microscopic optics while collecting near-field emission from the dipoles excited by the 50 nm deep evanescent field.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.0180) Medical optics and biotechnology : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.2520) Microscopy : Fluorescence microscopy
(260.6970) Physical optics : Total internal reflection
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 17, 2009
Revised Manuscript: September 30, 2009
Manuscript Accepted: October 2, 2009
Published: November 2, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Thomas P. Burghardt, Andrew D. Hipp, and Katalin Ajtai, "Around-the-objective total internal reflection fluorescence microscopy," Appl. Opt. 48, 6120-6131 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-32-6120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005). [CrossRef] [PubMed]
  2. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002). [CrossRef] [PubMed]
  3. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57, 1152-1157(1986). [CrossRef]
  4. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  5. T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004). [CrossRef] [PubMed]
  6. T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006). [CrossRef] [PubMed]
  7. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006). [CrossRef] [PubMed]
  8. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12, 4246-4254 (2004). [CrossRef] [PubMed]
  9. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005). [CrossRef] [PubMed]
  10. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006). [CrossRef] [PubMed]
  11. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210-1215 (2004). [CrossRef]
  12. T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009). [CrossRef] [PubMed]
  13. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Meth. Enzymol. 361, 1-33 (2003). [CrossRef] [PubMed]
  14. D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006). [CrossRef] [PubMed]
  15. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237-5242 (1989). [CrossRef] [PubMed]
  16. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981). [CrossRef] [PubMed]
  17. T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007). [CrossRef] [PubMed]
  18. T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006). [CrossRef] [PubMed]
  19. A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959). [CrossRef]
  21. T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).
  22. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337-350(1987). [CrossRef]
  23. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979). [CrossRef] [PubMed]
  24. T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981). [CrossRef] [PubMed]
  25. A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005). [CrossRef] [PubMed]
  26. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited