OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6152–6158

Imaging capability of patterned liquid crystals

Graham Myhre and Stanley Pau  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6152-6158 (2009)
http://dx.doi.org/10.1364/AO.48.006152


View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the ability to make high resolution arbitrary patterned optical retarders using liquid crystal polymer (LCP). Contact lithography is used to define unique LCP alignment domains. Patterned LCP retarders are imaged between crossed polarizers to determine pattern visibility as a function of feature size. It was determined that patterned retarders for wavelengths between 250 nm and 2500 nm can be constructed with feature sizes as small as 4 μm . We also showed that multiple patterns can be created on the same substrate using a combination of patterned LCP and opaque features. Our process has applications in displays, double-patterning lithography, and imaging polarimetry.

© 2009 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(260.1440) Physical optics : Birefringence
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Materials

History
Original Manuscript: September 9, 2009
Manuscript Accepted: October 6, 2009
Published: November 2, 2009

Citation
Graham Myhre and Stanley Pau, "Imaging capability of patterned liquid crystals," Appl. Opt. 48, 6152-6158 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-32-6152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Berreman, “Alignment of liquid-crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. 23, 215-231 (1973). [CrossRef]
  2. M. Ruetschi, J. Funfschilling, and H.-J. Guntherodt, “Creation of submicron orientational structures in thin liquid crystal polymer layers,” J. Appl. Phys. 80, 3155-3161 (1996). [CrossRef]
  3. D. Andrienko, Y. Kurioz, Y. Reznikov, C. Rosenblatt, R. Petschek, O. Lavrentovich, and D. Subacius, “Tilted photoalignment of a nematic liquid crystal induced by a magnetic field,” J. Appl. Phys. 83, 50-55 (1998). [CrossRef]
  4. I. O. Shklyarevskiy, M. I. Boamfa, P. C. M. Christianen, F. Touhari, H. van Kempen, G. Deroover, P. Callant, and J. C. Maan, “Magnetic field induced alignment of cyanine dye J-aggregates,” J. Chem. Phys. 116, 8407-8410 (2002). [CrossRef]
  5. T. Kim, M. T. Kao, E. F. Hasselbrink, and E. Meyhofer, “Active alignment of microtubules with electric fields,” Nano Lett. 7, 211-217 (2007).
  6. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, “Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates,” Liq. Cryst. 31, 859-869 (2004). [CrossRef]
  7. J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467-471 (2003).
  8. K. M. Seemann, J. Ebbecke, and A. Wixforth, “Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves,” Nanotechnology 17, 4529-4532 (2006). [CrossRef]
  9. D. S. Seo, S. Kobayashi, and M. Nishikawa, “Study of the pretilt angle for 5 cb on rubber polyimide films containing trifluoromethyl moiety and analysis of the surface atomic concentration of F/C (Percent) with an electron spectroscope for chemical-analysis,” Appl. Phys. Lett. 61, 2392-2394(1992). [CrossRef]
  10. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, “Near-surface alignment of polymers in rubbed films,” Nature 374, 709-711 (1995).
  11. A. J. Pidduck, G. P. Bryan Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vacuum Sci. Technol. A 14, 1723-1728(1996).
  12. I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliveira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591-598 (2003). [CrossRef]
  13. M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72, 2403-2405 (1998). [CrossRef]
  14. J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E 57, 5644-5650 (1998). [CrossRef]
  15. J. Chen, D. L. Johnson, P. J. Bos, X. Wang, and J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E 54, 1599-1603(1996). [CrossRef]
  16. Y. Wang, C. Xu, A. Kanazawa, T. Shiono, T. Ikeda, Y. Matsuki, and Y. Takeuchi, “Generation of nematic liquid crystal alignment with polyimides exposed to linearly polarized light of long wavelength,” J. Appl. Phys. 84, 181-188 (1998). [CrossRef]
  17. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 31, 2155-2164 (1992).
  18. M. O'Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D 33, R67-R84(2000).
  19. K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: a compact and robust phase-shifting point-diffraction interferometer based on dye-doped lc technology,” Mol. Cryst. Liq. Cryst. 454, 23-45 (2006).
  20. K. L. Marshall, K. Adlesberger, B. Kolodzie, G. Myhre, and D. W. Griffin, “A second-generation liquid crystal phase-shifting point-diffraction interferometer employing structured substrates,” Proc. SPIE 5880, 58800D (2005).
  21. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser light,” Nature 351, 49-50 (1991).
  22. M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8, 241-248 (1995). [CrossRef]
  23. A. G. Dyadyusha, V. M. Kozenkov, T. Y. Marusiy, Y. A. Reznikov, V. Y. Reshetnyak, and A. I. Khizhnyak, “Light-induced planar alignment of nematic liquid-crystal by the anisotropic surface without mechanical texture,” Ukr. Fiz. Zhurnal 36, 1059-1062 (1991).
  24. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 34, 3240-3249 (1995).
  25. D. Nečas and P. Klapetek, Gwyddion, GNU General Public License, 2008.
  26. S. Pau, O. Nalamasu, R. Cirelli, J. Frackoviak, A. Timko, G. P. Watson, F. Klemens, and G. Timp, “Sub-wavelength printing using multiple overlapping masks,” Microelectron. Eng. 53, 119-122 (2000). [CrossRef]
  27. H. Kromer, R. Kuhn, H. Pielartzik, W. Siebke, V. Eckhardt, and M. Schmidt, “Persistence length and molecular mass-distribution of a thermotropic main-chain liquid-crystal polymer,” Macromolecules 24, 1950-1954(1991). [CrossRef]
  28. F. L. Chen and A. M. Jamieson, “Molecular weight-dependant behavior of the twist distortion in a nematic monodomain containing a main-chain liquid-crystal polymer,” Macromolecules 27, 1943-1948 (1994). [CrossRef]
  29. R. Hentschke and J. Herzfeld, “Isotropic, nematic, and columnar ordering in systems of persistent flexible hard rods,” Phys. Rev. A 44, 1148-1155 (1991). [CrossRef]
  30. Microlithography: Science and Technology, K. Suzuki and B. W. Smith, eds., 2nd ed. (CRC Press, 2007).
  31. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multidomain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
  32. B. M. I. van der Zande, S. J. Roosendaal, C. Doornkamp, J. Steenbakkers, and J. Lub, “Synthesis, properties, and photopolymerization of liquid-crystalline oxetanes: application in transflective liquid-crystal displays,” Adv. Funct. Mater. 16, 791-798 (2006). [CrossRef]
  33. T. Tanigawa, Y. Sakakibara, S. B. Fang, T. Sekikawa, and M. Yamashita, “Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application,” Opt. Lett. 34, 1696-1698 (2009). [CrossRef]
  34. K. Hazu, T. Sekikawa, and M. Yamashita, “Spatial right modulator with an over-two-octave bandwidth from ultraviolet to near infrared,” Opt. Lett. 32, 3318-3320 (2007). [CrossRef]
  35. V. Arrighi, J. S. Higgins, R. A. Weiss, and A. L. Cimecioglu, “A small-angle neutron-scattering study of a semiflexible main-chain liquid crystalline copolyester,” Macromolecules 25, 5297-5305 (1992). [CrossRef]
  36. G. Cinacchi and L. De Gaetani, “On the deflection and persistence lengths of mesogenic worm-like rods,” Mol. Cryst. Liq. Cryst. 495, 274-284 (2008).
  37. C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. P. Russell, C. J. Hawker, D. A. Egolf, I. V. Melnikov, and E. Bodenschatz, “Reducing substrate pinning of block copolymer microdomains with a buffer layer of polymer brushes,” Macromolecules 33, 857-865 (2000). [CrossRef]
  38. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photoinduced alignment and patterning of hybrid liquid-crystalline polymer-films on single substrates,” Jpn. J. Appl. Phys. Part 2-Lett. 34, L764-L767 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited