OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6381–6391

Measured turbulent mixing in a small-scale circuit breaker model

N. P. T. Basse, R. Bini, and M. Seeger  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6381-6391 (2009)
http://dx.doi.org/10.1364/AO.48.006381


View Full Text Article

Enhanced HTML    Acrobat PDF (2389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of high voltage gas circuit breakers depends on the temperature distribution of hot gas or plasma from the arc zone mixed with cold gas that is present, for example, in the exhausts and mixing volume. Understanding the details of the mixing process is imperative to estimate the temperature distribution within the entire breaker volume. Design studies rely on computational fluid dynamics (CFD) simulations to search for the best way to achieve satisfactory mixing. One key uncertainty in the CFD simulations is the role of turbulence in this process and how to properly account for it. To gain knowledge of the mixing process between hot and cold gases, we have constructed a simplified breaker geometry that is flexible and accessible to diagnostics. Apart from standard measurements of current and arc voltage, we measure pressure in the arc zone and the mixing volume. Further, the mixing volume is specially designed to be transparent, allowing us to make shadowgraphy measurements of the turbulent mixing during and after the arcing phase. We report on experiments performed in air at atmospheric pressure.

© 2009 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.0115) Imaging systems : Imaging through turbulent media

ToC Category:
Imaging Systems

History
Original Manuscript: June 29, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: October 16, 2009
Published: November 9, 2009

Citation
N. P. T. Basse, R. Bini, and M. Seeger, "Measured turbulent mixing in a small-scale circuit breaker model," Appl. Opt. 48, 6381-6391 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-32-6381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.
  2. C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006). [CrossRef]
  3. E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982). [CrossRef]
  4. K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982). [CrossRef]
  5. K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982). [CrossRef]
  6. H. M. Ryan, High Voltage Engineering and Testing, 2nd ed. (Institute of Engineering and Technology, 2001). [CrossRef]
  7. H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008). [CrossRef]
  8. A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008). [CrossRef]
  9. N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008). [CrossRef]
  10. G. S. Settles, Schlieren and Shadowgraph Techniques, 1st ed. (Springer-Verlag, 2006).
  11. T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.
  12. R. A. Puffer, “Experimentelle Untersuchung der Heissgasströmung in einem SF6-Selbstblasschaltermodell mittels Particle Image Velocimetry (PIV) zur Verifikation von Simulationsmodellen,” Ph.D. thesis (RWTH Aachen, Germany, 2001).
  13. U. Kogelschatz and W. R. Schneider, “Quantitative schlieren techniques applied to high current arc investigations,” Appl. Opt. 11, 1822-1832 (1972). [CrossRef] [PubMed]
  14. B. Ineichen, U. Kogelschatz, and R. Dändliker, “Schlieren diagnostics and interferometry of an arc discharge using pulsed holography,” Appl. Opt. 12, 2554-2556 (1973). [CrossRef] [PubMed]
  15. U. Kogelschatz, “Application of a simple differential interferometer to high current arc discharges,” Appl. Opt. 13, 1749-1752 (1974). [CrossRef] [PubMed]
  16. D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976). [CrossRef]
  17. H. Schardin, “Das Toeplersche Schlierenverfahren,” VDI-Forschungsheft 367 (VDI Verlag, 1934).
  18. H. Hannes, “Über die Eigenschaften des Schattenverfahrens,” Optik (Jena) 13, 34-48 (1956).
  19. Phantom v7.3 from Vision Research, Inc., Commercial model name used for technical communication only.
  20. J. S. Bendat and A. G. Piersol, Random Data, 3rd ed.(Wiley, 2000).
  21. P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995). [CrossRef]
  22. K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999). [CrossRef]
  23. M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006). [CrossRef]
  24. E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006). [CrossRef]
  25. R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.
  26. D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006). [CrossRef]
  27. J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).
  28. T. Rösgen, “Quantitative flow visualization,” ETH Zürich Lecture Notes, version 1.4.2, 2005.
  29. S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006). [CrossRef] [PubMed]
  30. S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003). [CrossRef] [PubMed]
  31. S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993). [CrossRef] [PubMed]
  32. S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002). [CrossRef]
  33. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007). [CrossRef]
  34. I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980). [CrossRef]
  35. S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999). [CrossRef]
  36. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006). [CrossRef] [PubMed]
  37. D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008). [CrossRef]
  38. D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: How to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272-20282 (2008). [CrossRef] [PubMed]
  39. G. Papadopoulos, “Novel shadow image velocimetry technique for inferring temperature,” J. Thermophys. Heat Transfer 14, 593-603 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (8318 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited