OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 33 — Nov. 20, 2009
  • pp: 6408–6416

Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies

Jiajia Ge, Sarah J. Erickson, and Anuradha Godavarty  »View Author Affiliations


Applied Optics, Vol. 48, Issue 33, pp. 6408-6416 (2009)
http://dx.doi.org/10.1364/AO.48.006408


View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Handheld-probe-based optical imagers are a popular approach toward breast imaging because of their potential portability and maximum patient comfort. A novel handheld-probe-based optical imager has been developed and its feasibility for three-dimensional fluorescence tomographic imaging demonstrated. Extensive tomography studies were performed on large slab phantoms ( 650 ml ) to assess the performance limits of the handheld imager. Experiments were performed by using different target volumes ( 0.1 0.45 cm 3 ), target depths ( 1 3 cm ), and fluorescence (Indocyanine Green) absorption contrast ratios in a nonfluorescing ( 1 0 ) and constant fluorescing backgrounds ( 1000 1 to 5 1 ). The estimated sensitivity and specificity of the handheld imager are 43% and 95%, respectively.

© 2009 Optical Society of America

OCIS Codes
(170.6960) Medical optics and biotechnology : Tomography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 5, 2009
Revised Manuscript: October 21, 2009
Manuscript Accepted: October 23, 2009
Published: November 10, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Jiajia Ge, Sarah J. Erickson, and Anuradha Godavarty, "Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies," Appl. Opt. 48, 6408-6416 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-33-6408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004). [CrossRef] [PubMed]
  2. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005). [CrossRef] [PubMed]
  3. B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923-924 (2005). [CrossRef] [PubMed]
  4. K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005). [CrossRef]
  5. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005). [CrossRef] [PubMed]
  6. J. R. X. Xu, B. Qiang, J. J. Mao, and S. P. Povoski, “Development of a handheld near infrared imager for dynamic characterization of in vivo biological tissue systems.,” Appl. Opt. 46, 7442-7451 (2007). [CrossRef] [PubMed]
  7. B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007). [CrossRef] [PubMed]
  8. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008). [CrossRef] [PubMed]
  9. R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000). [CrossRef] [PubMed]
  10. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001). [CrossRef] [PubMed]
  11. F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003). [CrossRef]
  12. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193-195 (2006). [CrossRef] [PubMed]
  13. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007). [CrossRef]
  14. T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004). [CrossRef]
  15. N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007). [CrossRef] [PubMed]
  16. R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003). [CrossRef] [PubMed]
  17. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008). [CrossRef] [PubMed]
  18. C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008). [CrossRef] [PubMed]
  19. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716(2007). [CrossRef] [PubMed]
  20. S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited