OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 33 — Nov. 20, 2009
  • pp: 6470–6474

Chemical corrosion protection of optical components using atomic layer deposition

Xiaohua Du, Kevin Zhang, Kathy Holland, Thomas Tombler, and Martin Moskovits  »View Author Affiliations


Applied Optics, Vol. 48, Issue 33, pp. 6470-6474 (2009)
http://dx.doi.org/10.1364/AO.48.006470


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Very thin films deposited using atomic layer deposition (ALD) on aluminum mirrors showed extraordinary resistance toward concentrated alkali solutions, various chemical etchants, and solvents. Aluminum mirrors with no surface protection dissolved immediately in 24% aqueous KOH. Mirrors protected with 30 nm electron-beam deposited silica film were fully removed in 30 min . Mirrors with 10, 30, and 120 nm films grown by ALD required, respectively, 10, 15, and 60 h of exposure to the alkali for the mirror to be fully removed. Likewise, large-scale hydrogen bubbling was observed immediately upon immersing mirrors coated with electron-beam deposited silica in aqueous KOH, whereas no visible hydrogen bubbling was detected for the mirror protected by ALD silica. For mirrors protected by 120 nm ALD silica, a 2 h soak in various acid and solvent media produced no discernible change.

© 2009 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(240.0310) Optics at surfaces : Thin films
(310.1860) Thin films : Deposition and fabrication
(310.1515) Thin films : Protective coatings

ToC Category:
Thin Films

History
Original Manuscript: August 4, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 2, 2009
Published: November 13, 2009

Citation
Xiaohua Du, Kevin Zhang, Kathy Holland, Thomas Tombler, and Martin Moskovits, "Chemical corrosion protection of optical components using atomic layer deposition," Appl. Opt. 48, 6470-6474 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-33-6470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Harsh-environment optics growing--market intelligence,” Fiber Optics Weekly Update, http://findarticles.com/p/articles/mi_m0NVN/is_4_24/ai_112985420/.
  2. “Fiber optics for harsh environment,” http://www.timbercon.com/Fiber-Optics-for-Harsh-Environment/.
  3. M. N. Ott, F. LaRocca, W. J. Thomes, R. Switzer, and S. MacMurphy, “Optical fiber assemblies in harsh environments, the journey past, present, and future,” Proc. SPIE 7070, 707009 (2008). [CrossRef]
  4. C. Chu, P. D. Fuqua, and J. D. Barrie, “Corrosion characterization of durable silver coatings by electrochemical impedance spectroscopy and accelerated environmental testing,” Appl. Opt. 45, 1583-1593 (2006). [CrossRef] [PubMed]
  5. M. Pollack and S. C. Bates, “Taking optical probes into harsh environments,” http://archives.sensorsmag.com/articles/0600/76/.
  6. R. Cooper, T. K. Minton, X. Du, and S. M. George, “Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings,” Thin Solid Films 516, 4036-4039 (2008). [CrossRef]
  7. S. M. George, A. W. Ott, and J. W. Klaus, “Surface chemistry for atomic layer growth,” J. Phys. Chem. 100, 13121-13131 (1996). [CrossRef]
  8. T. Suntola, “Atomic layer epitaxy,” Thin Solid Films 216, 84-89 (1992). [CrossRef]
  9. M. Ritala and M. Leskela, “Atomic layer deposition,” in Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2001), pp. 103-161.
  10. M. D. Groner, S. M. George, and R. S. Mclean, “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition,” Appl. Phys. Lett. 88, 051907 (2006). [CrossRef]
  11. P. F. Carria, M. D. Groner, and S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006). [CrossRef]
  12. “nSILVER--Invisible protection against silver tarnishing,” http://www.beneq.com/nsilver.php.
  13. “Surfaces becoming 'nano' clean,” http://www.finnfacts.com/english/newsletter/news/beneq_0409.html.
  14. M. Makela, P. Soininen, and S. Sneck, “Protective coating of silver,” U.S. patent application, IPC8 Class AC23C1640FI, USPC Class 42725519.
  15. D. Hausmann, J. Becker, S. Wang, and R. G. Gorden, “Rapid vapor deposition of highly conformal silica nanolaminates,” Science 298, 402-406 (2002). [CrossRef] [PubMed]
  16. B. B. Burton, M. P. Boleslawski, A. T. Desombre, and S. M. George, “Rapid SiO2 atomic layer deposition using tris(tert-pentoxy) silanol,” Chem. Mater. 20, 7031-7043 (2008). [CrossRef]
  17. S. V. Mutilin and T. Khasanov, “The refractive index of homogeneous SiO2 thin films,” Opt. Spectrosc. 105, 461-465 (2008). [CrossRef]
  18. K. J. Hebert, S. Zafar, and E. A. Irene, “Measurement of the refractive index of thin SiO2 films using tunneling current oscillations and ellipsometry,” Appl. Phys. Lett. 68, 266-268 (1996). [CrossRef]
  19. N. V. Nguyen and C. A. Richer, “Thickness determination of ultra-thin SiO2 films on Si by spectroscopic ellipsometry,” in Silicon Nitride and Silicon Dioxide Insulating Thin Films, M. J. Deen, W. D. Brown, K. B. Sundaram, and S. I. Raider, eds. (Academic, 1997), pp. 183-193.
  20. M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density,” Appl. Opt. 44, 3006-3012 (2005). [CrossRef] [PubMed]
  21. X. Sun, R. Hong, H. Qi, Z. Fan, and J. Shao, “Microstructure and optical constants of sputtered Ag films of different thickness,” Acta Phys. Sin. 55, 4923-4927 (2006).
  22. B. C. Wilson, “Optical coating applications on automotive polymers and displays,” presented at the New Technologies in Decorating and Assembly Meeting, Dearborn, Michigan, 10-11 June 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited