OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6708–6715

Optical coherence tomography for quantitative surface topography

Sergio Ortiz, Damian Siedlecki, Laura Remon, and Susana Marcos  »View Author Affiliations


Applied Optics, Vol. 48, Issue 35, pp. 6708-6715 (2009)
http://dx.doi.org/10.1364/AO.48.006708


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the measurement and correction of fan distortion in optical coherence tomography (OCT). This effect arises from the scanning system configuration and prevents one, in general, from obtaining quantitative topographic data from OCT. Computer simulations allowed us to quantify the effect and evaluate its dependence on the scanning mirror separation and design of the collimating lens, as well as to estimate the optimal axial position of that lens to minimize the fan distortion. We also developed a numerical algorithm based on 3-D ray propagation for the correction of the residual fan distortion. The effect was studied experimentally using a custom developed time-domain OCT in a Michelson configuration provided with a confocal channel, and the accuracy of the fan distortion correction algorithm tested on samples of known dimensions (flat surfaces and spherical lenses). With a proper calibration of the system with use of an onfocal channel, this algorithm makes it possible for time-domain OCT devices to be used as topographers.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 22, 2009
Manuscript Accepted: November 5, 2009
Published: December 2, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Sergio Ortiz, Damian Siedlecki, Laura Remon, and Susana Marcos, "Optical coherence tomography for quantitative surface topography," Appl. Opt. 48, 6708-6715 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-35-6708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991). [CrossRef] [PubMed]
  2. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  4. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  5. B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16, 2405-2414 (2008). [CrossRef] [PubMed]
  6. M. Brzezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  7. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411-413 (1999). [CrossRef]
  8. C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44. [PubMed]
  9. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147-149 (1998). [CrossRef]
  10. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. G. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112-4133 (2009). [CrossRef] [PubMed]
  11. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009). [CrossRef]
  12. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004). [CrossRef] [PubMed]
  13. Y. Li, “Laser beam scanning by rotary mirrors. II. Conicsection scan patterns,” Appl. Opt. 34, 6417-6430 (1995). [CrossRef] [PubMed]
  14. Y. Li and J. Katz, “Asymmetric distribution of the scanned field of a rotating reflective polygon,” Appl. Opt. 36, 342-352(1997). [CrossRef] [PubMed]
  15. G. F. G. Marshall, “Scanning devices and systems,” in Applied Optics and Optical Engineering, R. Kingslake and B. J. Thompson, eds. (Academic, 1980), Vol. 6, pp. 203-262.
  16. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976-5985 (2008). [CrossRef] [PubMed]
  17. J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005). [CrossRef]
  18. M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007). [CrossRef]
  19. V. Westphall, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397-404 (2002).
  20. J. I. Montagu, “Galvanometric and resonant scanners,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (Marcel Dekker, 2004), pp. 417-476. [CrossRef]
  21. L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008). [CrossRef]
  22. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007). [CrossRef] [PubMed]
  23. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880-14894 (2009). [CrossRef] [PubMed]
  24. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842-4858(2009). [CrossRef] [PubMed]
  25. T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.
  26. Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited