OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6797–6810

Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

Shai N. Shafrir, Henry J. Romanofsky, Michael Skarlinski, Mimi Wang, Chunlin Miao, Sivan Salzman, Taylor Chartier, Joni Mici, John C. Lambropoulos, Rui Shen, Hong Yang, and Stephen D. Jacobs  »View Author Affiliations


Applied Optics, Vol. 48, Issue 35, pp. 6797-6810 (2009)
http://dx.doi.org/10.1364/AO.48.006797


View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was 50 100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. “Free” nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

© 2009 Optical Society of America

OCIS Codes
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(160.2750) Materials : Glass and other amorphous materials
(220.4610) Optical design and fabrication : Optical fabrication
(240.5450) Optics at surfaces : Polishing

ToC Category:
Materials

History
Original Manuscript: September 3, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 7, 2009
Published: December 3, 2009

Citation
Shai N. Shafrir, Henry J. Romanofsky, Michael Skarlinski, Mimi Wang, Chunlin Miao, Sivan Salzman, Taylor Chartier, Joni Mici, John C. Lambropoulos, Rui Shen, Hong Yang, and Stephen D. Jacobs, "Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics," Appl. Opt. 48, 6797-6810 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-35-6797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743-3755 (1995). [CrossRef]
  2. D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998). [CrossRef]
  3. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998). [CrossRef]
  4. M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).
  5. S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008). [CrossRef]
  6. J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).
  7. QED Technologies, Rochester, New York, USA.
  8. J. D. T. Kruschwitz, “Technology boost in precision optics: the story of QED Technologies Inc.,” Opt. Photon. News 10-13(2006).
  9. W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications, M. Nakano and K. Koyama, eds. (World Scientific, 1997), pp. 837-844.
  10. W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998). [CrossRef]
  11. S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).
  12. J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941(2007). [CrossRef]
  13. A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001). [CrossRef]
  14. C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585-2594 (2009). [CrossRef]
  15. For a medium hardness polyurethane polishing pad (SUBA X pads) on a double-sided polishing machine, the useful lifetime is within the range of 100-110 hr. Pads on a single-sided polishing machine last considerably longer, approximately three to four months. From personal communication with M. Naselaris, Sydor Optics, Rochester, New York, USA (2009).
  16. T. S. Izumitani, Optical Glass, Translation series (American Institute of Physics, 1986), p. 197.
  17. M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004). [CrossRef]
  18. M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).
  19. P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997). [CrossRef]
  20. S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.
  21. J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004). [CrossRef]
  22. I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005). [CrossRef]
  23. B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002). [CrossRef]
  24. W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.
  25. I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005). [CrossRef]
  26. F. F. Fang and H. J. Choi, “Polymeric nanobead coated carbonyl iron particles and their magnetic property,” Phys. Status Solidi A 204, 4190-4193 (2007). [CrossRef]
  27. T. J. Swihart, “Method for protecting carbonyl iron powder and compositions therefrom,” U.S. patent 4,731,191 (15 March 1988).
  28. H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011 (5 November 1991).
  29. T. Atarashi and K. Nakatsuka, “Rheological fluid,” U.S. patent 6,280,658 (28 August 2001).
  30. J. C. Ulicny and Y. T. Cheng, “Oxidation-resistant magnetorheological fluid,” U.S. patent 6,929,757 (16 August 2005).
  31. K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).
  32. H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006). [CrossRef]
  33. J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).
  34. Carbonyl iron (CI) HQ, BASF Aktiengesellschaft Inorganic Specialties, Ludwigshafen, Germany.
  35. R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).
  36. SUPRA 40VP Scanning Electron Microscope (SEM), Zeiss, Germany.
  37. L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008). [CrossRef]
  38. Zirconium oxide material safety data sheet, Zircar Zirconia Inc., Florida, New York, USA.
  39. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006). [CrossRef]
  40. VCA 2500xe video contact angle system, AST Products, Inc., Billerica, Massachusetts, USA.
  41. AccuPyc II 1340 gas pycnometer, Micromeritics, Norcross, Georgia, USA.
  42. D. R. Lide, ed. CRC Handbook of Chemistry and Physics, a Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008-2009), pp. 4-101.
  43. R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley-VCH, 2003), p. XVIII.
  44. Brookfield cone and plate viscometer model DV-III CP, Brookfield Engineering Laboratories, Inc., Middleboro, Massachusetts, USA.
  45. D. C. Harris, Materials for Infrared Windows and Domes: Properties and Performance (SPIE, 1999), p. 415.
  46. Micro Abrasives Corp. Westfield, Massachusetts, USA
  47. Hastilite Precision Polishes for Advanced Optics (PO), J. H. Rhodes, a division of Universal Photonics, Inc., Franklin Springs, New York, USA.
  48. 915 Pitch, Universal Photonics, Inc., Hicksville, New York, USA.
  49. Buehler METADI Diamond Suspension (water based), Buehler, Lake Bluff, Illinois, USA.
  50. Kay Diamond Products LLC, Boca Raton, Florida, USA.
  51. Zygo Mark IV xp Interferometer, Zygo Corporation, Middlefield, Connecticut, USA. This instrument is a 4 in. He-Ne Fizeau interferometer with a wavelength of 632.8 nm. Peak-to-valley (pv) for surface flatness and depth of deepest penetration (ddp) of the spot were measured in micrometers.
  52. NewView 5000 noncontact profilometer, Zygo Corporation, Connecticut, USA.
  53. Talysurf CCI 3000 noncontact 3D surface profiler (Taylor Hobson Inc., Rolling Meadows, Illinois, USA). The 50× objective (0.37 mm×0.37 mm) and four phase averages were used for each measurement, unfiltered. The Talysurf CCI has a maximum resolution of 0.1 Å in the z axis and 0.47 μm in the x-y axis (maximum optical resolution).
  54. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500-5515 (2007). [CrossRef]
  55. Beckman 210 pH meter, Beckman Instruments Inc., Fullerton, California, USA.
  56. D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999). [CrossRef]
  57. The moisture content is measured using an Arizona Instrument Computrac Max-1000 moisture analyzer, Arizona Instruments LLC, Chandler, Arizona, USA.
  58. Probemet conductive molding compound, Buehler, Lake Bluff, Illinois, USA.
  59. Specimen mounting press, Buehler, Lake Bluff, Illinois, USA.
  60. J. C. Lambropoulos and R. Varshneya, “Glass material response to the fabrication process: Examples from lapping,” in OSA Topical Meeting on Optical Fabrication and Testing (Optical Society of America, 2004), paper OTuA1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited