OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 679–690

Influence of nonideal chirped fiber Bragg grating characteristics on all-optical clock recovery based on the temporal Talbot effect

Masaki Oiwa, Shunsuke Minami, Kenichiro Tsuji, Noriaki Onodera, and Masatoshi Saruwatari  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 679-690 (2009)
http://dx.doi.org/10.1364/AO.48.000679


View Full Text Article

Enhanced HTML    Acrobat PDF (1773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically and experimentally evaluate the influence of the bandwidth limitation and group delay ripple (GDR) of linearly chirped fiber Bragg gratings (LCFBGs) on the all-optical clock recovery utilizing the temporal Talbot effect. To simulate the reasonably arbitrary shape of the GDR of LCFBGs, the generalized distribution function model of GDR was proposed and utilized. The quality of recovered clock pulses was evaluated by using the proposed parameters “peak variation” and “pulse visibility.” Simulation results indicated that both the signal pulses with < 1 % duty factor and LCFBGs with the bandwidth of > 125 times the bit rate, 10 nm for 10 Gbit / s input signal, were required to obtain both < 20 % peak variation and > 17 dB pulse visibility of the clock pulses recovered from 2 7 1 pseudorandom bit sequence (PRBS) pulses, and indicated that the LCFBGs with < 20 ps peak-to-peak GDR could recover the clock pulses from the 10 Gbit / s signal with almost the same quality as that recovered with an ideal LCFBG (with no GDR). In addition, it was revealed that < 20 ps peak-to-peak GDR did not degrade the timing jitter reduction effect. Qualitative agreement of the experimental and simulation results justified our analytical methods. Our analytical approach and results will be very useful to practically design the LCFBGs for an all-optical clock recovery circuit based on the temporal Talbot effect.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(320.5550) Ultrafast optics : Pulses
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 19, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 20, 2008
Published: January 21, 2009

Citation
Masaki Oiwa, Shunsuke Minami, Kenichiro Tsuji, Noriaki Onodera, and Masatoshi Saruwatari, "Influence of nonideal chirped fiber Bragg grating characteristics on all-optical clock recovery based on the temporal Talbot effect," Appl. Opt. 48, 679-690 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988). [CrossRef]
  2. C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000). [CrossRef]
  3. J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006). [CrossRef]
  4. T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004). [CrossRef]
  5. S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005). [CrossRef]
  6. B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2. [PubMed]
  7. A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993). [CrossRef]
  8. D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994). [CrossRef]
  9. S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995). [CrossRef]
  10. L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996). [CrossRef]
  11. L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000). [CrossRef]
  12. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000). [CrossRef]
  13. L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007). [CrossRef]
  14. L. R. Chen and J. C. Cartledge, “Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorpsion modulator and application to all-optical clock recovery,” J. Lightwave Technol. 26, 799-806 (2008). [CrossRef]
  15. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000). [CrossRef]
  16. L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1. [PubMed]
  17. B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1. [PubMed]
  18. M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992). [CrossRef]
  19. D. L. Butler, J. S. Wey, M. W. Chbat, G. L. Burdge, and J. Goldhar, “Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,” Opt. Lett. 20, 560-562 (1995). [CrossRef] [PubMed]
  20. H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).
  21. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373-1376(1981). [CrossRef]
  22. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum. Electron. 7, 728-744 (2001). [CrossRef]
  23. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405-410 (1998). [CrossRef]
  24. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998). [CrossRef]
  25. W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004). [CrossRef]
  26. J. Azaña and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672-1674 (1999). [CrossRef]
  27. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40 GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481-1483 (2000). [CrossRef]
  28. D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25, 2898-2903 (2007). [CrossRef]
  29. D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5. [CrossRef] [PubMed]
  30. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. B 21, 1170-1177 (2004). [CrossRef]
  31. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. II. Intensity spectrum,” J. Opt. Soc. Am. B 22, 753-763 (2005). [CrossRef]
  32. D. Pudo and L. R. Chen, “Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect,” Opt. Express 15, 6351-6357 (2007). [CrossRef] [PubMed]
  33. D. Pudo, C. R. Fernández-Pousa, and L. R. Chen, “Timing jitter transfer function in the temporal Talbot effect,” IEEE Photon. Technol. Lett. 20, 496-498 (2008). [CrossRef]
  34. L. Chantada, C. R. Fernández-Pousa, M. T. Flores-Arias, and C. Gómez-Reino, “Radio-frequency spectrum analysis of a second-order dispersive Talbot line,” Appl. Opt. 47, E19-E26 (2008). [CrossRef] [PubMed]
  35. M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3. [PubMed]
  36. J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004). [CrossRef]
  37. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998). [CrossRef]
  38. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, and A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670-3677 (2000). [CrossRef]
  39. T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001). [CrossRef]
  40. T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003). [CrossRef]
  41. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003). [CrossRef] [PubMed]
  42. T.-J. Ahn, Y. Park, and J. Azaña, “Fast and accurate group delay ripple measurement technique for ultralong chirped fiber Bragg gratings,” Opt. Lett. 32, 2674-2676 (2007). [CrossRef] [PubMed]
  43. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998). [CrossRef]
  44. H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited