OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 695–703

Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection

Eric A. Fallows, Thomas G. Cleary, and J. Houston Miller  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 695-703 (2009)
http://dx.doi.org/10.1364/AO.48.000695


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO 2 , HCN, and C 2 H 2 , near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO 2 , HCN, and C 2 H 2 were obtained every 25–30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420 parts in 10 6 ( ppm ) CO, 1600 ppm CO 2 , 530 parts in 10 9 ( ppb ) HCN, and 440 ppb C 2 H 2 . Peak gas concentrations from the small room were 270 ppm CO, 2100 ppm CO 2 , and 310 ppb C 2 H 2 .

© 2009 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.2020) Lasers and laser optics : Diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 9, 2008
Manuscript Accepted: November 19, 2008
Published: January 21, 2009

Citation
Eric A. Fallows, Thomas G. Cleary, and J. Houston Miller, "Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection," Appl. Opt. 48, 695-703 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).
  2. W. L. Grosshandler, “Review of measurements and candidate signatures for early fire detection,” Rep. NISTIR 5555 (Fire Science Division, National Institute Standards and Technology, 1995).
  3. J. S. Goldmeer, “A rugged LED-based sensor for fire detection,” NIST Spec. Publ. 965, 378-389 (2001).
  4. D. Bomse, “A diode laser multigas analyzer for advanced detection of fires,” NIST Spec. Publ. 965, 358-369 (2001).
  5. T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).
  6. R. D. May, “Next-generation diode laser gas sensors for environmental and industrial monitoring,” Proc. SPIE 3858, 110-118 (1999). [CrossRef]
  7. R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).
  8. Governing Sourcebook State and Local Fire Protection Spending (Congressional Quarterly, Inc., 2008), http://sourcebook.governing.com/topicresults.jsp?yr=&mrtype=2&sort=612%3A&ctype=1&sub=145&x=37&y=5.
  9. D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002). [CrossRef]
  10. D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.
  11. B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).
  12. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity indium gallium arsenide phosphide diode laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688-2693 (1988).
  13. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082-6089 (1993).
  14. M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486-490 (2003). [CrossRef]
  15. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009-2016 (2000). [CrossRef]
  16. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
  17. R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992). [CrossRef]
  18. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995). [CrossRef]
  19. A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999). [CrossRef]
  20. J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002). [CrossRef]
  21. D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999). [CrossRef]
  22. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).
  23. R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995). [CrossRef]
  24. R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996). [CrossRef]
  25. M. P. Tolocka and J. H. Miller, “Measurements of formaldehyde concentrations and formation rates in a methane-air, non-premixed flame and their implications for heat-release rate,” in Symposium (International) on Combustion, [Proceedings] 27th (Combustion Institute, 1998), pp. 633-640.
  26. J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).
  27. Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).
  28. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998). [CrossRef]
  29. R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).
  30. R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).
  31. D. Romanini, “Quantitative absorption spectroscopy with a very high sensitivity: cavity ring-down and intracavity absorption laser,” Ann. Phys. (Paris) 20, 665-674 (1995). [CrossRef]
  32. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  33. J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).
  34. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  35. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994). [CrossRef]
  36. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997). [CrossRef]
  37. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859-1866 (1999). [CrossRef]
  38. B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997). [CrossRef]
  39. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).
  40. B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).
  41. R. G. Gann, “Estimating data for incapacitation of people by fire smoke,” Fire Technol. 40, 201-207 (2004). [CrossRef]
  42. W. M. Pitts, “Reactivity of product gases generated in idealized enclosure fire environments,” in Symposium (International) on Combustion, [Proceedings] 24th (Combustion Institute, 1992), pp. 1737-1746.
  43. D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998). [CrossRef]
  44. E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).
  45. W. L. Grosshandler, “Towards the development of a universal fire emulator-detector evaluator,” Fire Saf. J. 29, 113-127(1997). [CrossRef]
  46. J. M. Hollas, Modern Spectroscopy, 4th ed. (Wiley, 2004), p. 452.
  47. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited