OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B159–B171

Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction

Ravi M. Varma, Dean S. Venables, Albert A. Ruth, Uwe Heitmann, Eric Schlosser, and Sophie Dixneuf  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B159-B171 (2009)
http://dx.doi.org/10.1364/AO.48.00B159


View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An incoherent broadband cavity-enhanced absorption spectroscopy setup employing a 20 m long optical cavity is described for sensitive in situ measurements of light extinction between 630 and 690 nm . The setup was installed at the SAPHIR atmospheric simulation chamber during an intercomparison of instruments for nitrate ( NO 3 ) radical detection. The long cavity was stable for the entire duration of the two week campaign. A detection limit of 2 pptv for NO 3 in an acquisition time of 5 s was established during that time. In addition to monitoring NO 3 , nitrogen dioxide ( NO 2 ) concentrations were simultaneously retrieved and compared against concurrent measurements by a chemiluminescence detector. Some results from the campaign are presented to demonstrate the performance of the instrument in an atmosphere containing water vapor and inorganic aerosol. The spectral analysis of NO 3 and NO 2 , the concentration dependence of the water absorption cross sections, and the retrieval of aerosol extinction are discussed. The first deployment of the setup in the field is also briefly described.

© 2009 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(300.6550) Spectroscopy : Spectroscopy, visible

History
Original Manuscript: August 1, 2008
Revised Manuscript: October 29, 2008
Manuscript Accepted: December 4, 2008
Published: January 8, 2009

Citation
Ravi M. Varma, Dean S. Venables, Albert A. Ruth, Uwe Heitmann, Eric Schlosser, and Sophie Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt. 48, B159-B171 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-B159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004). [CrossRef]
  2. S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003). [CrossRef] [PubMed]
  3. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005). [CrossRef]
  4. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002). [CrossRef]
  5. S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002). [CrossRef]
  6. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002). [CrossRef]
  7. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44, 7239-7242 (2005). [CrossRef] [PubMed]
  8. S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005). [CrossRef]
  9. W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006). [CrossRef]
  10. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a mid-IR DFB diode laser and cavity enhanced absorption spectroscopy,” Opt. Express 14, 11442-11452 (2006). [CrossRef] [PubMed]
  11. S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007). [CrossRef]
  12. T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007). [CrossRef]
  13. T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008). [CrossRef]
  14. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005). [CrossRef]
  15. R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007). [CrossRef]
  16. H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008). [CrossRef] [PubMed]
  17. S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003). [CrossRef]
  18. S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003). [CrossRef]
  19. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285-288 (1942). [CrossRef]
  20. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883-889 (1965). [CrossRef]
  21. U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409-5415(1999). [CrossRef]
  22. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998). [CrossRef]
  23. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999). [CrossRef]
  24. A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001). [CrossRef]
  25. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001). [CrossRef]
  26. S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003). [CrossRef] [PubMed]
  27. A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007). [CrossRef] [PubMed]
  28. E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002). [CrossRef]
  29. T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033-1042(2002). [PubMed]
  30. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006). [CrossRef] [PubMed]
  31. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).
  32. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003). [CrossRef]
  33. D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006). [CrossRef] [PubMed]
  34. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008). [CrossRef] [PubMed]
  35. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008). [CrossRef] [PubMed]
  36. S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004). [CrossRef]
  37. M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008). [CrossRef]
  38. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity-enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008). [CrossRef] [PubMed]
  39. H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.
  40. B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005). [CrossRef]
  41. J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006). [CrossRef]
  42. T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007). [CrossRef]
  43. S. G. Kraus, “DOASIS--A framework design for DOAS,” Ph.D. thesis (University of Mannheim, 2006).
  44. R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994). [CrossRef]
  45. S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002). [CrossRef]
  46. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  47. F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998). [CrossRef]
  48. J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003). [CrossRef]
  49. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998). [CrossRef]
  50. W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.
  51. H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.
  52. R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008). [CrossRef]
  53. G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008). [CrossRef]
  54. H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005). [CrossRef]
  55. R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited