OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B51–B56

Widely tunable laterally coupled distributed feedback laser diodes for multispecies gas analysis based on InAs/InGaAs quantum-dash material

W. Zeller, M. Legge, J. Seufert, R. Werner, M. Fischer, and J. Koeth  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. B51-B56 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Applying the concept of binary superimposed gratings, widely tunable single-mode laser diodes suitable for multispecies gas detection in the 1.8 μm wavelength range could be manufactured on InAs/InGaAs quantum dash-in-a-well material. A discrete wavelength tuning range of 21 nm as well as continuous tuning over 0.8 nm are demonstrated. Water and hydrogen chloride could be detected at absorption lines 13 nm apart.

© 2008 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(280.3420) Remote sensing and sensors : Laser sensors

Original Manuscript: July 15, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 17, 2008
Published: November 17, 2008

W. Zeller, M. Legge, J. Seufert, R. Werner, M. Fischer, and J. Koeth, "Widely tunable laterally coupled distributed feedback laser diodes for multispecies gas analysis based on InAs/InGaAs quantum-dash material," Appl. Opt. 48, B51-B56 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).
  2. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993). [CrossRef]
  3. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996). [CrossRef]
  4. H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997). [CrossRef]
  5. I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998). [CrossRef]
  6. J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999). [CrossRef]
  7. R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005). [CrossRef]
  8. M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004). [CrossRef]
  9. C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000). [CrossRef]
  10. S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004). [CrossRef]
  11. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993). [CrossRef]
  12. M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001). [CrossRef]
  13. V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992). [CrossRef]
  14. V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993). [CrossRef]
  15. V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.
  16. M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002). [CrossRef]
  17. J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004). [CrossRef]
  18. A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006). [CrossRef]
  19. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005). [CrossRef]
  20. A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005). [CrossRef]
  21. G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000). [CrossRef]
  22. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474-3478 (1987). [CrossRef] [PubMed]
  23. T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multi-section DFB semiconductor lasers,” IEEE J. Quantum Electron. 27, 2404-2415 (1991). [CrossRef]
  24. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001). [CrossRef]
  25. A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited