OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B80–B86

Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy

Markus Germer and Marcus Wolff  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B80-B86 (2009)
http://dx.doi.org/10.1364/AO.48.000B80


View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High detection selectivity is extremely important for gas analyzers in order to correctly identify the measured compound. Therefore, laser-based systems require a high optical resolution, which primarily depends on the spectral linewidth of the radiation source. This study examines the effective linewidth (chirp) of a pulsed distributed feedback (DFB) quantum cascade laser (QCL) in a photoacoustic (PA) gas detection system. The influence of the QCL operating parameters pulse duration and pulse current as well as the impact of the modulation technique are investigated. Effective QCL linewidths for pulse gate modulation, pulse frequency modulation, and chopper modulation are compared. The investigations are performed by measuring the PA spectra of nitrogen monoxide absorption lines. The results prove the strong influence of pulse duration and pulse current. They also demonstrate that the modulation technique has a considerable influence and, consequently, affects the detection selectivity of the PA analyzer. The aim of this research is to determine optimum operational parameters for high resolution PA spectroscopy.

© 2008 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

History
Original Manuscript: July 17, 2008
Revised Manuscript: October 22, 2008
Manuscript Accepted: November 1, 2008
Published: December 8, 2008

Citation
Markus Germer and Marcus Wolff, "Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy," Appl. Opt. 48, B80-B86 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-B80


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade lasers,” Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, “Photoacoustic detection of ozone using a quantum cascade laser,” Appl. Phys. B 78, 677-680 (2004). [CrossRef]
  3. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004). [CrossRef]
  4. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178-180 (1999). [CrossRef]
  5. S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: an adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458-2461 (2002). [CrossRef]
  6. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169-1173 (2002). [CrossRef] [PubMed]
  7. R. Jiménez, M. Taslakov, V. Simeonov, B. Calpini, F. Jeanneret, D. Hofstetter, M. Beck, J. Faist, and H. van den Bergh, “Ozone detection by differential absorption spectroscopy at ambient pressure with a 9.6 μm pulsed quantum-cascade laser,” Appl. Phys. B 78, 249-256 (2004). [CrossRef]
  8. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866-6872 (2000). [CrossRef]
  9. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  10. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys B 85, 235-241 (2006). [CrossRef]
  11. M. B. Filho, M. G. da Silva, M. S. Sthel, D. U. Schramm, H. Vargas, A. Miklós, and P. Hess, “Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy,” Appl. Opt. 45, 4966-4971 (2006). [CrossRef] [PubMed]
  12. D. Hofstetter, M. Beck, J. Faist, M. Nägele, and M. W. Sigrist, “Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers,” Opt. Lett. 26, 887-889 (2001). [CrossRef]
  13. W. Demtröder, Laser Spectroscopy (Springer-Verlag, 2002).
  14. Z. Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, and Zs. Bor, “Diode laser based photoacoustic humidity sensors,” Sens. Actuators B. 91, 219-226 (2003). [CrossRef]
  15. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001). [CrossRef]
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner,, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  17. T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93, 3158-3160 (2003). [CrossRef]
  18. T. Beyer, M. Braun, S. Hartwig, and A. Lambrecht, “Linewidth measurement of free-running, pulsed, distributed feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551-4554(2004). [CrossRef]
  19. B. Grouiez, B. Parvitte, L. Joly, D. Courtois, and V. Zeninari, “ Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm, ” Appl. Phys. B 90, 177-186 (2008). [CrossRef]
  20. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited