OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 932–940

Angular displacement and deformation analyses using a speckle-based wavefront sensor

Percival F. Almoro, Giancarlo Pedrini, Arun Anand, Wolfgang Osten, and Steen G. Hanson  »View Author Affiliations


Applied Optics, Vol. 48, Issue 5, pp. 932-940 (2009)
http://dx.doi.org/10.1364/AO.48.000932


View Full Text Article

Enhanced HTML    Acrobat PDF (1487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefronts incident on a random phase plate are reconstructed via phase retrieval utilizing axially displaced speckle intensity measurements and the wave propagation equation. Retrieved phases and phase subtraction facilitate the investigations of wavefronts from test objects before and after undergoing a small rotation or deformation without sign ambiguity. Angular displacement ( Δ θ ) between incident planar wavefronts is determined from the light source vacuum wavelength (λ) divided by the fringe spacing (Λ). Fourier analysis of the wavefront phase difference yields a peak frequency that is inversely proportional to Λ, and the sign gives the direction of rotation. Numerical simulations confirm the experimental results. In the experiments, the smallest Δ θ measured is 0.031 ° . The technique also permits deformation analysis of a reflecting test object under thermal loading. The technique offers simple, high resolution, noncontact, and whole field evaluation of three-dimensional objects before and after undergoing rotation or deformation.

© 2009 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(050.1960) Diffraction and gratings : Diffraction theory
(090.2880) Holography : Holographic interferometry
(350.5030) Other areas of optics : Phase
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: May 9, 2008
Revised Manuscript: October 7, 2008
Manuscript Accepted: January 14, 2009
Published: February 3, 2009

Citation
Percival F. Almoro, Giancarlo Pedrini, Arun Anand, Wolfgang Osten, and Steen G. Hanson, "Angular displacement and deformation analyses using a speckle-based wavefront sensor," Appl. Opt. 48, 932-940 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-5-932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Zeng, H. Matsumoto, and K. Kawachi, “Divergent-ray projection method for measuring the flapping angle, lag angle, and torsional angle of a bumblebee wing,” Opt. Eng. 35, 3135-3139 (1996). [CrossRef]
  2. S. Duym and M. Lumori, “Distorted laser interferometric angle measurements of a disk drive pivot,” IEEE/ASME Trans. Mechatron. 3, 265-274 (1998). [CrossRef]
  3. W. Gao, P. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26, 396-404 (2002). [CrossRef]
  4. B. Freer, R. Reece, M. Graf, T. Parrill, and D. Polner, “In situ beam angle measurement in a multi-wafer high current ion implanter,” Nucl. Instrum. Methods Phys. Res. B 237, 378-383 (2005). [CrossRef]
  5. D. Malacara and O. Harris, “Interferometric measurement of angles,” Appl. Opt. 9, 1630-1633 (1970). [CrossRef] [PubMed]
  6. P. Shi and E. Stijns, “New optical method for measuring small-angle rotations,” Appl. Opt. 27, 4342-4344 (1988). [CrossRef] [PubMed]
  7. P. Shi and E. Stijns, “Improving the linearity of the Michelson interferometric angular measurement by a parameter compensation method,” Appl. Opt. 32, 44-51 (1993). [CrossRef] [PubMed]
  8. J. Yuan, X. W. Long, and K. Y. Yang, “Temperature-controlled autocollimator with ultrahigh angular measuring precision,” Rev. Sci. Instrum. 76, 125106 (2005). [CrossRef]
  9. L. Kremer, D. Budelsky, D. Platte, and P. von Brentano, “Autocollimator for spectroscopy of broad resonances with pulsed lasers,” Appl. Opt. 34, 4827-4834 (1995). [CrossRef] [PubMed]
  10. G. G. Luther and R. D. Deslattes, “Single-axis photoelectronic autocollimator,” Rev. Sci. Instrum. 55, 747-750 (1984). [CrossRef]
  11. P. R. Yoder, Jr., E. R. Schlesinger, and J. L. Chickvary, “Active annular-beam laser autocollimator system,” Appl. Opt. 14, 1890-1895 (1975). [CrossRef] [PubMed]
  12. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31, 6047-6055 (1992). [CrossRef] [PubMed]
  13. P. S. Huang, “Use of thin films for high-sensitivity angle measurement,” Appl. Opt. 38, 4831-4836 (1999). [CrossRef]
  14. M. H. Chiu and D. C. Su, “Angle measurement using total internal-reflection heterodyne interferometry,” Opt. Eng. 36, 1750-1753 (1997). [CrossRef]
  15. S. R. Kitchen and C. Dam-Hansen, “Holographic common-path interferometer for angular displacement measurements with spatial phase stepping and extended measurement range,” Appl. Opt. 42, 51-59 (2003). [CrossRef] [PubMed]
  16. S. Prakash, S. Singh, and S. Rana, “Automated small tilt-angle measurement using Lau interferometry,” Appl. Opt. 44, 5905-5909 (2005). [CrossRef] [PubMed]
  17. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38, 6550-6555 (1999). [CrossRef]
  18. L. Yu, G. Pedrini, W. Osten, and M. K. Kim, “Three-dimensional angle measurement based on propagation vector analysis of digital holography,” Appl. Opt. 46, 3539-3545(2007). [CrossRef] [PubMed]
  19. B. Rose, H. Imam, S. G. Hanson, H. T. Yura, and R. S. Hansen, “Laser-speckle angular-displacement sensor: theoretical and experimental study,” Appl. Opt. 37, 2119-2129 (1998). [CrossRef]
  20. Z. Ge and M. Takeda, “High-resolution two-dimensional angle measurement technique based on fringe analysis,” Appl. Opt. 42, 6859-6868 (2003). [CrossRef] [PubMed]
  21. A. Anand, G. Pedrini, W. Osten, and P. Almoro, “Wavefront sensing with random amplitude mask and phase retrieval,” Opt. Lett. 32, 1584-1586 (2007). [CrossRef] [PubMed]
  22. P. Almoro and S. G. Hanson, “Random phase plate for wavefront sensing via phase retrieval and a volume speckle field,” Appl. Opt. 47, 2979-2987 (2008). [CrossRef] [PubMed]
  23. P. Almoro and S. G. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express 16, 7608-7618 (2008). [CrossRef] [PubMed]
  24. C. Vest, Holographic Interferometry (Wiley, 1979).
  25. P. Rastogi, Optical Measurement Techniques and Applications (Artech, 1997).
  26. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 186-193.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2684 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited