OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 974–978

Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency

Dengfeng Kuang, Xiaoliang Zhang, Min Gui, and Zhiliang Fang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 5, pp. 974-978 (2009)
http://dx.doi.org/10.1364/AO.48.000974


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hexagonal microlens array directly fabricated on an indium tin oxide glass substrate by the combination of direct laser writing and inductively coupled plasma etching is demonstrated to enhance the outcoupling efficiency of the organic light emitting devices, which can avoid the loss of photons and the mechanical and thermal deformations at the glass/microlenses interface. An atomic force microscope measurement indicates the contour of the fabricated hexagonal microlens is nearly an ideal part of a hemisphere. From the comparison with the operating OLED without a microlens array, the outcoupling efficiency is enhanced more than 40% with the hexagonal microlens array on the glass substrate, and the enhanced emission from the active area of the device with the hexagonal microlens array at the viewing angles from 0 ° to 40 ° can clearly be seen.

© 2009 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(230.3670) Optical devices : Light-emitting diodes
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: October 1, 2008
Revised Manuscript: November 23, 2008
Manuscript Accepted: January 4, 2009
Published: February 4, 2009

Citation
Dengfeng Kuang, Xiaoliang Zhang, Min Gui, and Zhiliang Fang, "Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency," Appl. Opt. 48, 974-978 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-5-974


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002). [CrossRef]
  2. Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006). [CrossRef] [PubMed]
  3. S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002). [CrossRef]
  4. H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array theory and experiment,” J. Display Technol. 1, 278-282 (2005). [CrossRef]
  5. Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006). [CrossRef]
  6. J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, “Enhanced outcoupling factor of microcavity organic light-emitting devices with irregular microlens array,” Opt. Express 14, 6564-6571 (2006). [CrossRef] [PubMed]
  7. M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006). [CrossRef]
  8. H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007). [CrossRef]
  9. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008). [CrossRef]
  10. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008). [CrossRef] [PubMed]
  11. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003). [CrossRef]
  12. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004). [CrossRef]
  13. T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37, 4069-4079 (1998). [CrossRef]
  14. E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000). [CrossRef]
  15. F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005). [CrossRef]
  16. V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited