OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1073–1083

Passivity test of Mueller matrices in the presence of additive Gaussian noise

Yoshitate Takakura and Marc-Philippe Stoll  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1073-1083 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is possible to introduce tolerancing with the realizability test of Givens and Kostinski [ J. Mod. Opt. 40, 471 (1993)] with a minor modification: it suffices to add a special matrix to [ G ] [ M ] T [ G ] [ M ] . Consequently, it is possible to check experimental Mueller matrices with a more flexible tool. Application to the emblematic case of the Mueller images of the free space shows that more than 99% of the pixels are in fact physical, while only 2% initially passed the test.

© 2009 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: September 29, 2008
Revised Manuscript: December 30, 2008
Manuscript Accepted: January 14, 2009
Published: February 12, 2009

Yoshitate Takakura and Marc-Philippe Stoll, "Passivity test of Mueller matrices in the presence of additive Gaussian noise," Appl. Opt. 48, 1073-1083 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  2. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (Optical Society of America, 1995).
  3. H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661 (1948).
  4. D. H. Goldstein, “Mueller matrix dual-rotating polarimeter,” Appl. Opt. 31, 6676-6683 (1992). [CrossRef] [PubMed]
  5. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216-222 (2000). [CrossRef]
  6. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  7. M. Sanjay Kumar and R. Simon, “Characterization of Mueller matrices in polarization optics,” Opt. Commun. 88, 464-470(1992). [CrossRef]
  8. S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26-36 (1986).
  9. S. R. Cloude, “Conditions for the physical realizability of matrix operator in polarimetry,” Proc. SPIE 1166, 177-185(1989).
  10. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305-2319 (1994). [CrossRef]
  11. Z.-F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461-484 (1992). [CrossRef]
  12. B. J. Howell, “Measurement of the polarisation effects of an instrument using partially polarized light,” Appl. Opt. 18, 809-812 (1979). [CrossRef] [PubMed]
  13. C. R. Givens and A. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471-481 (1993). [CrossRef]
  14. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072-5088 (1993). [CrossRef]
  15. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955-987 (1998).
  16. A. B. Kostinski, B. D. James, and W.-M. Boerner, “Optimal reception of partially polarized waves,” J. Opt. Soc. Am. A 5, 58-64 (1988). [CrossRef]
  17. A. B. Kostinski, “Depolarization criterion for incoherent scattering,” Appl. Opt. 31, 3506-3508 (1992). [CrossRef] [PubMed]
  18. K. E. Yushtin and S. N. Savenkov, “Analysis of Mueller matrix elements measurement error influence on its physical realisability,” in Proceedings of Mathematical Methods in Electromagnetic Theory (MMET'98), Kharkov, Ukraine (1998), pp. 435-437.
  19. F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109-151 (1997). [CrossRef]
  20. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, “Maximum-likehood estimation of Mueller matrices,” Opt. Lett. 31, 817-819 (2006). [CrossRef] [PubMed]
  21. Y. Takakura and J. E. Ahmad, “Noise distribution of Mueller matrices retrieved with active rotating polarimeters,” Appl. Opt. 46, 7354-7364 (2007). [CrossRef] [PubMed]
  22. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231-287 (1965). [CrossRef]
  23. J. M. Steele, The Cauchy-Schwartz Master Class (Cambridge University Press, 2004). [CrossRef]
  24. A. Aiello and J. P. Woerdman, “Linear algebra for Mueller calculus,” http://www.arxiv.org/abs/math/math-ph/0412061.
  25. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  26. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  27. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media,” J. Opt. Soc. Am. A 4, 433-437 (1987). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press), 2002).
  30. S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599-1610 (1995). [CrossRef]
  31. J. W. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE Trans. Circuits Syst. CAS-25, 772-781(1978). [CrossRef]
  32. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1985).
  33. P. S. Hauge, “Automated Mueller matrix ellipsometry,” Opt. Commun 17, 74-76 (1976). [CrossRef]
  34. E. Landi Degl'Innocenti and J. C. del Toro Iniesta, “Physical significance of experimental Mueller matrices,” J. Opt. Soc. Am. A 15, 533-537 (1998). [CrossRef]
  35. C. N. Delzell, “A continuous, constructive solution to Hilbert's 17th problem,” Invent. Math. 76, 365-384 (1984). [CrossRef]
  36. J. E. Ahmad and Y. Takakura, “Estimation of physically realizable Mueller matrices from experiments using global constrained optimization,” Opt. Express 16, 14274-14287(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited