OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: 1303–1307

Mechanism of phase-energy coupling in f-to-2f interferometry

Chengquan Li, Eric Moon, Hiroki Mashiko, He Wang, Christopher M. Nakamura, Jason Tackett, and Zenghu Chang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 7, pp. 1303-1307 (2009)
http://dx.doi.org/10.1364/AO.48.001303


View Full Text Article

Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

White-light generation has been used widely in single-shot f-to-2f interferometers for stabilizing the carrier-envelope (CE) phase of laser amplifiers. The accuracy of the relative phase values measured by such an interferometer is affected by fluctuations in the laser pulse energy. A simple two-step model is proposed to explain the mechanism that couples the laser energy and the CE phase. The model explains the experimentally observed dependence of the group delay between the f and the 2f pulses on the laser energy, as well as the CE phase shift caused by the pulse energy variation.

© 2009 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7100) Ultrafast optics : Ultrafast measurements
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Thin Films

History
Original Manuscript: October 9, 2008
Manuscript Accepted: January 20, 2009
Published: February 23, 2009

Citation
Chengquan Li, Eric Moon, Hiroki Mashiko, He Wang, Christopher M. Nakamura, Jason Tackett, and Zenghu Chang, "Mechanism of phase-energy coupling in f-to-2f interferometry," Appl. Opt. 48, 1303-1307 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-7-1303


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611-615 (2003). [CrossRef]
  2. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. de Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182-184 (2001). [CrossRef]
  3. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihara, T. Homma, and H. Takahashi, “Single-shot measurement of carrier-envelope phase changes by spectral interferometry,” Opt. Lett. 26, 1436-1438 (2001). [CrossRef]
  4. A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovler, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-controlled amplification of few-cycle laser pulses,” IEEE J. Sel. Top. Quantum Electron. 9, 972-989 (2003). [CrossRef]
  5. M. Kakehata, Y. Fujihira, H. Takada, Y. Kobayashi, K. Torizuka, T. Homma, and H. Takahashi, “Measurements of carrier-envelope phase changes of 100 Hz amplified laser pulses,” Appl. Phys. B 74, S43-S50 (2002). [CrossRef]
  6. C. Li, E. Moon, H. Wang, H. Mashiko, C. M. Nakamura, J. Tackett, and Z. Chang, “Determining the phase-energy coupling coefficient in carrier-envelope phase measurements,” Opt. Lett. 32, 796-798 (2007). [CrossRef]
  7. C. Li, E. Moon, and Z. Chang, “Carrier-envelope phase shift caused by variation of grating separation,” Opt. Lett. 31, 3113-3115 (2006). [CrossRef]
  8. Our f-to-2f interferometers are similar to the Femtosecond Phase Stabilization Unit APS800 manufactured by Menlosystems. A description of the unit can be found at http://www.menlosystems.com/home/products.html?cat=5.
  9. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995). [CrossRef]
  10. A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934 (1999). [CrossRef]
  11. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000). [CrossRef]
  12. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005). [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  15. F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier-envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42 (2002). [CrossRef]
  16. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215-229 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited