OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: 1337–1346

Spectral modulation for full linear polarimetry

Frans Snik, Theodora Karalidi, and Christoph U. Keller  »View Author Affiliations


Applied Optics, Vol. 48, Issue 7, pp. 1337-1346 (2009)
http://dx.doi.org/10.1364/AO.48.001337


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Linear (spectro) polarimetry is usually performed using separate photon flux measurements after spatial or temporal polarization modulation. Such classical polarimeters are limited in sensitivity and accuracy by systematic effects and noise. We describe a spectral modulation principle that is based on encoding the full linear polarization properties of light in its spectrum. Such spectral modulation is obtained with an optical train of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizer. The emergent spectral modulation is sinusoidal with its amplitude scaling with the degree of linear polarization and its phase scaling with the angle of linear polarization. The large advantage of this passive setup is that all polarization information is, in principle, contained in a single spectral measurement, thereby eliminating all differential effects that potentially create spurious polarization signals. Since the polarization properties are obtained through curve fitting, the susceptibility to noise is relatively low. We provide general design options for a spectral modulator and describe the design of a prototype modulator. Currently, the setup in combination with a dedicated retrieval algorithm can be used to measure linear polarization signals with a relative accuracy of 5%.

© 2009 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.1190) Materials : Anisotropic optical materials
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 9, 2008
Manuscript Accepted: January 13, 2009
Published: February 23, 2009

Citation
Frans Snik, Theodora Karalidi, and Christoph U. Keller, "Spectral modulation for full linear polarimetry," Appl. Opt. 48, 1337-1346 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-7-1337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Semel, J.-F. Donati, and D. E. Rees, “Zeeman-Doppler imaging of active stars. 3: Instrumental and technical considerations,” Astron. Astrophys. 278, 231-237 (1993).
  2. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475-1477 (1999). [CrossRef]
  3. F. J. Iannarilli, S. H. Jones, H. E. Scott, and P. Kebabian, “Polarimetric Spectral Intensity Modulation (P-SIM): Enabling simultaneous hyperspectral and polarimetric imaging,” Proc. SPIE 3698, 474-481 (1999). [CrossRef]
  4. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12, 6559-6573 (2004). [CrossRef] [PubMed]
  5. A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Opt. Lett. 31, 3279-3281 (2006). [CrossRef] [PubMed]
  6. F. Snik, T. Karalidi, C. U. Keller, E. Laan, R. ter Horst, R. Navarro, D. M. Stam, C. Aas, J. de Vries, G. Oomen, and R. Hoogeveen, “SPEX, An in-orbit spectropolarimeter for planetary exploration,” Proc. SPIE. 7010, 701015 (2008). [CrossRef]
  7. J. S. Baba, J. R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, , “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002). [CrossRef] [PubMed]
  8. F. Cremer, W. de Jong, K. Schutte, J. T. Johnson, and B. A. Baertlein, “Surface mine signature modeling for passive polarimetric IR,” Proc. SPIE. 4742, 51-62 (2002). [CrossRef]
  9. R. Mayer, R. Priest, C. Steliman, G. Hazel, and A. Schaum, “Detection of camouflaged targets in cluttered backgrounds using fusion of near simultaneous spectral and polarimetric imaging,” Naval Research Lab Tech. Note ADA392956 (Naval Research Laboratory, 2000).
  10. V. C. Vanderbilt, L. Grant, L. L. Biehl, and B. F. Robinson, “Specular, diffuse, and polarized light scattered by two wheat canopies,” Appl. Opt. 24, 2408-2418 (1985). [CrossRef] [PubMed]
  11. B. Lyot, “Le filtre monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31-75 (1944).
  12. J. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973-975 (1971). [CrossRef] [PubMed]
  13. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter wave plate,” Proc. Indian Acad. Sci. Sect. A 42, 24-31 (1955).
  14. C. U. Keller, “Instrumentation for astrophysical spectropolarimetry,” in Astrophysical Spectropolarimetry, J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sanchez, eds. (Cambridge University Press, 2002), pp. 303-354
  15. R. J. King, “Quarter-wave retardation systems based on the Fresnel rhomb principle,” J. Sci. Instrum. 43, 617-621(1966). [CrossRef]
  16. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146-5152 (1988). [CrossRef] [PubMed]
  17. S. Guimond and D. Elmore, “Designing effective crystal waveplates requires understanding the engineering tradeoffs,” oemagazine (May 2004).
  18. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  19. J. W. Evans, “The birefringent filter,” J. Opt. Soc. Am. 39, 229-242 (1949). [CrossRef]
  20. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  21. ArcOptix, “Radial polarization converter,” http://www.arcoptix.com/radial_polarization_converter.htm.
  22. F. Snik, “Astronomical applications for “radial polarimetry”,” in Astronomical Polarimetry 2008: Science from Small to Large Telescopes, P. Bastien and N. Manset, eds., ASP Conference Series (Astronomical Society of the Pacific, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited