OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C171–C181

Switch multiplexer of fiber-optic channels Based on multibeam acousto-optic diffraction

Sergey Antonov, Alexander Vainer, Valery Proklov, and Yuri Rezvov  »View Author Affiliations


Applied Optics, Vol. 48, Issue 7, pp. C171-C181 (2009)
http://dx.doi.org/10.1364/AO.48.00C171


View Full Text Article

Enhanced HTML    Acrobat PDF (1260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The peculiarities of the multibeam acousto-optic Bragg diffraction of light by a multifrequency acoustic signal are investigated. The investigation is related to design of fiber-optic space division switch multiplexer 1 × N . It is proved that a specialized two-dimensional acousto-optic deflector can perform high efficiency multifunctional light switching of fiber-optic channels. The device has advanced characteristics—the number of channels is up to a few hundred, the switching time is about a few microseconds, and the cross talk is limited to 45 dB .

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1040) Optical devices : Acousto-optical devices
(130.4815) Integrated optics : Optical switching devices

History
Original Manuscript: July 24, 2008
Revised Manuscript: February 10, 2009
Manuscript Accepted: February 18, 2009
Published: February 27, 2009

Citation
Sergey Antonov, Alexander Vainer, Valery Proklov, and Yuri Rezvov, "Switch multiplexer of fiber-optic channels based on multibeam acousto-optic diffraction," Appl. Opt. 48, C171-C181 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-7-C171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Yamazaki and M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228-1230 (1992). [CrossRef] [PubMed]
  2. H. Yamazaki, M. Yamaguchi, and K. Hirabayashi, “Estimation of the possible scale for holographic switches with liquid-crystal displays,” Appl. Opt. 34, 1333-1340 (1995). [CrossRef] [PubMed]
  3. R. Guerre, F. Fahrni, and P. Renaud, “Fast 10 μs microelectromechanical optical switch inside a planar hollow waveguide (PHW),” J. Lightwave Technol. 24, 1486-1498 (2006). [CrossRef]
  4. H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007). [CrossRef]
  5. Q. Wang and J. Yao, “A high speed 2×2 electro-optic switch using a polarization modulator,” Opt. Express 15, 16500-16505 (2007). [CrossRef] [PubMed]
  6. R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996). [CrossRef] [PubMed]
  7. R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.
  8. C. S. Tsai and P. Le, “4×4 nonblocking integrated acousto-optic space switch,” Appl. Phys. Lett. 60, 431-433 (1992). [CrossRef]
  9. C. S. Tsai and A. Kar-Roy, “8×8 symmetrical non-blocking integrated acousto-optic space switch module on LiNbO3,” IEEE Photon. Technol. Lett. 4, 731-734 (1992). [CrossRef]
  10. C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993). [CrossRef]
  11. D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245-4256 (1991). [CrossRef] [PubMed]
  12. L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007). [CrossRef]
  13. L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006). [CrossRef]
  14. J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008). [CrossRef]
  15. A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004). [CrossRef]
  16. A. Korpel, Acousto-Optics (Dekker, 1988).
  17. D. Souilhac, D. Billerey, and A. Gundjian, “Infrared two-dimensional acousto-optic deflector using a tellurium crystal,” Appl. Opt. 29, 1798-1804 (1990). [CrossRef] [PubMed]
  18. A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).
  19. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990). [CrossRef]
  20. D. O. Harris and A. Vanderlugt, “Multichannel acousto-optic crossbar switch with arbitrary signal fan-out,” Appl. Opt. 31, 1684-1686 (1992). [CrossRef] [PubMed]
  21. D. W. Prather and J. N. Mait, “Acousto-optic generation of two-dimensional spot arrays,” Opt. Lett. 16, 1720-1722 (1991). [CrossRef] [PubMed]
  22. P. Paparao, S. A. Boothroyd, W. M. Robertson, and J. Chrostowski, “Generation of reconfigurable interconnections with a 2-dimensional acousto-optic deflector,” Appl. Opt. 33, 2140-2146 (1994). [CrossRef] [PubMed]
  23. A. V. Danilyan, V. A. Shulgin, and V. E. Chernov, “Optimization of the input losses in fiber-optic communications with an acousto-optic all-optical switch,” Appl. Opt. 45, 4319-4324(2006). [CrossRef] [PubMed]
  24. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977). [CrossRef]
  25. V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).
  26. J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990). [CrossRef]
  27. E. Tervonen, A. T. Friberg, and J. Westerholm, “Programmable optical interconnections by multilevel synthetic acousto-optic holograms,” Opt. Lett. 16, 1274-1276 (1991). [CrossRef] [PubMed]
  28. S. N. Antonov, “Angular splitting of the Bragg diffraction order in an acoustooptical modulator due to a frequency-modulated acoustic wave,” Tech. Phys. 50, 513-516 (2005), translated from Zh. Tekhnicheskoj Fiziki (Russia) 75, 122-124 (2005). [CrossRef]
  29. S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007). [CrossRef]
  30. V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.
  31. S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008). [CrossRef]
  32. V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828. [CrossRef]
  33. T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975). [CrossRef]
  34. M. G. Gazalet, J. C. Kastelik, C. Bruneel, O. Bazzi, and E. Bridoux, “Acousto-optic multifrequency modulators-reduction of the phase-grating intermodulation products,” Appl. Opt. 32, 2455-2460 (1993). [CrossRef] [PubMed]
  35. P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999). [CrossRef]
  36. K. W. Goosen and J. A. Walker, “Monolithic optical fiber stub array,” Opt. Lett. 17, 381-383 (1992). [CrossRef]
  37. M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004). [CrossRef]
  38. A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000). [CrossRef]
  39. ThorLabs catalog, http://www.thorlabs.com.
  40. Sentronic booklet, http://www.sentronic.net.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited