OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C38–C45

Acoustic signals generated by laser-irradiated metal nanoparticles

Sergey Egerev, Sergey Ermilov, Oleg Ovchinnikov, Andrey Fokin, Dmitry Guzatov, Vasily Klimov, Andrey Kanavin, and Alexander Oraevsky  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. C38-C45 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a physical model that explains several sequential stages of the conversion of optical to acoustical energy when irradiating diluted suspensions of metal nanoparticles with laser pulses. Optical absorption and scattering of a single particle driven by plasmon resonance interactions in an aqueous medium are considered. Thermal effects produced by laser-irradiated nanoparticles, dynamics of vapor bubble formation, and acoustic signals from expanding bubbles formed around heated nanoparticles are calculated. Stochastic features of the pressure magnitude emitted as a result of low-fluence irradiation of suspensions are also discussed. The probabilistic distribution of pressure magnitude from individual bubbles was found to obey Zipf’s law for low concentrations of nanoparticles, while increasing their concentration brings the pressure magnitude distribution into conformance with the Gaussian law.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7170) Medical optics and biotechnology : Ultrasound
(190.4870) Nonlinear optics : Photothermal effects

Original Manuscript: August 13, 2008
Manuscript Accepted: September 29, 2008
Published: November 12, 2008

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Sergey Egerev, Sergey Ermilov, Oleg Ovchinnikov, Andrey Fokin, Dmitry Guzatov, Vasily Klimov, Andrey Kanavin, and Alexander Oraevsky, "Acoustic signals generated by laser-irradiated metal nanoparticles," Appl. Opt. 48, C38-C45 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001). [CrossRef]
  2. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004). [CrossRef] [PubMed]
  3. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007). [CrossRef] [PubMed]
  4. C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999). [CrossRef]
  5. D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001). [CrossRef] [PubMed]
  6. J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993). [CrossRef] [PubMed]
  7. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006). [CrossRef]
  8. S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990). [CrossRef]
  9. H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995). [CrossRef]
  10. S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995). [CrossRef]
  11. S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005). [CrossRef]
  12. B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996). [CrossRef] [PubMed]
  13. V. K. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass. Trans. 36, 391-399 (1993). [CrossRef]
  14. J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000). [CrossRef]
  15. S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004). [CrossRef] [PubMed]
  16. G. Mie, “Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen,” Ann. Phys. 25, 377-445 (1908). [CrossRef]
  17. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  19. Lord Rayleigh “On pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 83-100 (1917).
  20. C. E. Brennen, Cavitation and Bubble Dynamics, (Oxford U. Press, 1995).
  21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).
  22. D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003). [CrossRef]
  23. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (National Bureau of Standards, 1964).
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  25. A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic imaging,” in Photoacoustic Imaging and Spectroscopy, L. Wang, ed. (Taylor & Francis, 2008), Chap. 30.
  26. C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998). [CrossRef]
  27. V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005). [CrossRef]
  28. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003). [CrossRef] [PubMed]
  29. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999). [CrossRef]
  30. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited