OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1425–1429

Real correlation time measurement in laser speckle contrast analysis using wide exposure time range images

Tomi Smausz, Dániel Zölei, and Béla Hopp  »View Author Affiliations


Applied Optics, Vol. 48, Issue 8, pp. 1425-1429 (2009)
http://dx.doi.org/10.1364/AO.48.001425


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In laser speckle contrast analysis (LASCA) used for imaging of blood flow, besides the moving blood cells, the speckle pattern is also influenced by the imaging system and scattering properties of the laser- illuminated static surface. A latex microsphere ( 650 nm size) emulsion was covered with scattering semitransparent materials (Teflon foils, tracing paper). Speckle images were recorded with different exposure times ( 0.2 ms 500 ms ), and correlation times were determined by parameterizing the theoretical contrast-exposure time function. The correlation times obtained for covered and uncovered microsphere emulsions were in good agreement. The possibility of obtaining comparable, setup-independent results in blood perfusion monitoring can contribute to better applicability of LASCA.

© 2009 Optical Society of America

OCIS Codes
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

History
Original Manuscript: November 21, 2008
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 12, 2009
Published: March 3, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Tomi Smausz, Dániel Zölei, and Béla Hopp, "Real correlation time measurement in laser speckle contrast analysis using wide exposure time range images," Appl. Opt. 48, 1425-1429 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-8-1425


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981). [CrossRef]
  2. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996). [CrossRef]
  3. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005). [CrossRef]
  4. L. F. Rojas, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004). [CrossRef]
  5. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9-15 (2008). [CrossRef]
  6. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886-2888 (2008). [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28-30 (2003). [CrossRef] [PubMed]
  8. A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004). [CrossRef]
  9. Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, and T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020-3029 (1992). [CrossRef] [PubMed]
  10. M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999). [CrossRef] [PubMed]
  11. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005). [CrossRef] [PubMed]
  12. B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993). [CrossRef] [PubMed]
  13. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004). [CrossRef] [PubMed]
  14. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004). [CrossRef] [PubMed]
  15. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465-3467 (2006). [CrossRef] [PubMed]
  16. A. C. Völker, P. Zakharov, B. Weber, A. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782-9787 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited