OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1463–1472

Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging

Christian Remmersmann, Stephan Stürwald, Björn Kemper, Patrik Langehanenberg, and Gert von Bally  »View Author Affiliations


Applied Optics, Vol. 48, Issue 8, pp. 1463-1472 (2009)
http://dx.doi.org/10.1364/AO.48.001463


View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.5070) Image processing : Phase retrieval
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: September 22, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: February 7, 2009
Published: March 3, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Christian Remmersmann, Stephan Stürwald, Björn Kemper, Patrik Langehanenberg, and Gert von Bally, "Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging," Appl. Opt. 48, 1463-1472 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-8-1463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  2. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). [CrossRef] [PubMed]
  3. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Monfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  4. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  5. C. J. Mann, L. Yu, C.-M. Lo, and K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  7. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). [CrossRef]
  8. G. von Bally, B. Kemper, D. Carl, S. Knoche, M. Kempe, C. Dietrich, M. Stutz, R. Wolleschensky, K. Schütze, M. Stich, A. Buchstaller, K. Irion, J. Beuthan, I. Gersonde, and J. Schnekenburger, “New methods for marker-free live cell and tumour analysis,” in Biophotonics: Visions for Better Health Care (VCH-Wiley, 2006), pp. 301-359. [CrossRef]
  9. F. Dubois, L. Johannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  10. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  11. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and application to microscopy,” Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  12. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  13. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing (Wiley, 1992), pp. 501-598.
  14. S. Knoche, B. Kemper, G. Wernicke, and G. von Bally, “Modulation analysis in spatial phase shifting electronic speckle pattern interferometry and application for automated data selection on biological specimens,” Opt. Commun. 270, 68-78 (2007). [CrossRef]
  15. T. Kreis, Handbook of Holographic Interferometry--Optical and Digital Methods (Wiley-VCH, 2005).
  16. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537-541 (1990). [CrossRef]
  17. T. Bothe, J. Burke, and H. Helmers, “Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors,” Appl. Opt. 36, 5310-5316(1997). [CrossRef] [PubMed]
  18. B. Gutmann and H. Weber, “Phase-shifting calibration and error detection in phase-shifting applications: a new method,” Appl. Opt. 37, 7624-7631 (1998). [CrossRef]
  19. T. M. Kreis, Holographic Interferometry: Principles and Methods (Academie-Verlag, 1996).
  20. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  21. H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205-210 (1999). [CrossRef]
  22. User's guide, Sony XCD X700 (2000).
  23. K. Creath, “Temporal phase measurement methods,” in Interferogramm Analysis, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 94-140.
  24. H. P. Elsässer, U. Lehr, B. Agricola, and H. F. Kern, “Establishment and characterization of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma,” Virchows Arch. B 61, 295-306 (1992). [CrossRef] [PubMed]
  25. D. W. Robinson, “Phase unwrapping methods,” in Interferogramm Analysis, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 194-229.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited