OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1485–1493

Fast-convergent algorithm for speckle-based phase retrieval and a design for dynamic wavefront sensing

Percival F. Almoro, Anne Margarette S. Maallo, and Steen G. Hanson  »View Author Affiliations

Applied Optics, Vol. 48, Issue 8, pp. 1485-1493 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavefront reconstruction is carried out using sequentially recorded speckle patterns and an iterative phase retrieval method based on wave propagation. A novel fast-convergent algorithm that maintains the propagation distance in the iteration step equal to the distance between measurement planes is demonstrated. Employing the new algorithm, influences of the number of measurement planes, number of iterations, and uncertainties in the detector’s transverse and axial positions on the rate of phase convergence are analyzed experimentally. A conceptual design for a dynamic wavefront sensor using arrays of beam splitters and detectors for parallel speckle recording is described.

© 2009 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(030.6140) Coherence and statistical optics : Speckle
(050.1960) Diffraction and gratings : Diffraction theory
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics: Wave-front Sensing

Original Manuscript: October 28, 2008
Revised Manuscript: February 5, 2009
Manuscript Accepted: February 12, 2009
Published: March 2, 2009

Percival F. Almoro, Anne Margarette S. Maallo, and Steen G. Hanson, "Fast-convergent algorithm for speckle-based phase retrieval and a design for dynamic wavefront sensing," Appl. Opt. 48, 1485-1493 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Nugent, “X-ray noninterferometric phase imaging: a unified picture,” J. Opt. Soc. Am. A 24, 536-547 (2007). [CrossRef]
  2. J. R. Fienup, B. J. Thelen, R. G. Paxman, and D. A. Carrara, “Comparison of phase diversity and curvature wavefront sensing,” Proc. SPIE 3353, 930-940 (1998). [CrossRef]
  3. D. W. Tyler, S. D. Ford, B. R. Hunt, R. G. Paxman, M. C. Roggemann, J. C. Rountree, T. J. Schulz, K. J. Schulze, J. H. Seldin, D. G. Sheppard, B. E. Stribling, W. C. van Kampen, and B. M. Welch, “Comparison of image reconstruction algorithms using adaptive optics instrumentation,” Proc. SPIE 3353, 160-171 (1998). [CrossRef]
  4. B. L. Ellerbroek, B. J. Thelen, D. J. Lee, D. A. Carrara, and R. G. Paxman, “Comparison of Shack-Hartmann wavefront sensing and phase-diverse phase retrieval,” Proc. SPIE 3126, 307-320 (1997). [CrossRef]
  5. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237-246 (l972).
  6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  7. G. R. Brady and J. R. Fienup, “Nonlinear optimization algorithm for retrieving the full complex pupil function,” Opt. Express 14, 474-486 (2006). [CrossRef] [PubMed]
  8. D. L. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D 6, L6-L9 (1973). [CrossRef]
  9. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron optics,” J. Phys. D 6, 2200-2225 (l973). [CrossRef]
  10. C. Roddier and F. Roddier, “Combined approach to Hubble space telescope wave-front distortion analysis,” Appl. Opt. 32, 2992-3008 (1993). [CrossRef] [PubMed]
  11. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 2l, 829-832 (l982).
  12. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32-39 (l979).
  13. R. G. Paxman and J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914-923 (1988). [CrossRef]
  14. B. Dean, D. Aronstein, J. S. Smith, R. Shiri, and S. Acton, “Phase retrieval algorithm for JWST flight and testbed telescope,” Proc. SPIE 6265, 626511 (2006). [CrossRef]
  15. A. Contos, D. Acton, A. Barto, L. Burns, J. Contreras, B. Dean, E. Elliott, L. Feinberg, K. Hansen, B. Hardy, W. Hayden, J. Knight, P. Lightsey, C. Starr, and J. Sullivan, “Verification of the James Webb Space Telescope (JWST) wavefront sensing and control system,” Proc. SPIE 7010, 70100S-10(2008).
  16. W. Coene, G. Janssen, M. O. de Beek, and D. van Dyck, “Phase retrieval through focus variation for ultraresolution in field-emission transmission electron-microscopy,” Phys. Rev. Lett. 69, 3743-3746 (1992). [CrossRef] [PubMed]
  17. W. O. Saxton, “Correction of artefacts in linear and nonlinear high resolution electron micropraphs,” J. Microsc. Spectrosc. Electron. 5, 661-670 (1980).
  18. E. Kirkland, “Improved high resolution image processing of bright field electron micrographs: I. Theory,” Ultramicroscopy 15, 151-172 (1984). [CrossRef]
  19. S. Yang and H. Takajo, “Quantization error reduction in the measurement of Fourier intensity for phase retrieval,” Jpn. J. Appl. Phys. 43, 5747-5751 (2004). [CrossRef]
  20. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264-7278 (2008). [CrossRef] [PubMed]
  21. G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, “Optical wavefront measurement using phase retrieval with transverse translation diversity,” Opt. Express 17, 624-639 (2009). [CrossRef] [PubMed]
  22. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795-4797 (2004). [CrossRef]
  23. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef] [PubMed]
  24. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309-311 (2008). [CrossRef] [PubMed]
  25. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, and S. G. Hanson, “Angular displacement and deformation analyses using a speckle-based wavefront sensor,” Appl. Opt. 48, 932-940 (2009). [CrossRef] [PubMed]
  26. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, and S. G. Hanson, “Interferometric evaluation of angular displacements using phase retrieval,” Opt. Lett. 33, 2041-2043 (2008). [CrossRef] [PubMed]
  27. P. F. Almoro, P. N. Gundu, and S. G. Hanson, “Numerical correction of aberrations via phase retrieval with speckle illumination,” Opt. Lett. 34, 521-523 (2009). [CrossRef] [PubMed]
  28. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  29. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006). [CrossRef] [PubMed]
  30. M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, “Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography,” Opt. Express 15, 8243-8251 (2007). [CrossRef] [PubMed]
  31. D. Monteiro, G. Vdovin, and P. Sarro, “High-speed wavefront sensor compatible with standard CMOS technology,” Sens. Actuators A 109, 220-230 (2004). [CrossRef]
  32. L. McMackin, R. Hugo, R. Pierson, and C. Truman, “High speed optical tomography system for imaging dynamic transparent media,” Opt. Express 1, 302-311(1997). [CrossRef] [PubMed]
  33. J. G. Marichal-Hernández, L. F. Rodríguez-Ramos, F. Rosa, and J. M. Rodríguez-Ramos, “Atmospheric wavefront phase recovery by use of specialized hardware: graphical processing units and field-programmable gate arrays,” Appl. Opt. 44, 7587-7594 (2005). [CrossRef] [PubMed]
  34. P. Almoro and S. Hanson, “Random phase plate for wavefront sensing via phase retrieval and a volume speckle field,” Appl. Opt. 47, 2979-2987 (2008). [CrossRef] [PubMed]
  35. P. Almoro and S. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express 16, 7608-7618 (2008). [CrossRef] [PubMed]
  36. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596-8605 (2006). [CrossRef] [PubMed]
  37. P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57-69 (2008). [CrossRef]
  38. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733-735 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited