OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1520–1526

Spectral multiplexing method for digital snapshot spectral imaging

Michael A. Golub, Menachem Nathan, Amir Averbuch, Eitan Lavi, Valery A. Zheludev, and Alon Schclar  »View Author Affiliations

Applied Optics, Vol. 48, Issue 8, pp. 1520-1526 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a spectral imaging method for piecewise “macropixel” objects, which allows a regular digital camera to be converted into a digital snapshot spectral imager by equipping the camera with only a disperser and a demultiplexing algorithm. The method exploits a “multiplexed spectrum” intensity pattern, i.e., the superposition of spectra from adjacent different image points, formed on the image sensor of the digital camera. The spatial image resolution is restricted to a macropixel level in order to acquire both spectral and spatial data (i.e., an entire spectral cube) in a single snapshot. Results of laboratory experiments with a special macropixel object image, composed of small, spatially uniform squares, provide to our knowledge a first verification of the proposed spectral imaging method.

© 2009 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(300.6190) Spectroscopy : Spectrometers
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: October 27, 2008
Revised Manuscript: February 5, 2009
Manuscript Accepted: February 6, 2009
Published: March 4, 2009

Michael A. Golub, Menachem Nathan, Amir Averbuch, Eitan Lavi, Valery A. Zheludev, and Alon Schclar, "Spectral multiplexing method for digital snapshot spectral imaging," Appl. Opt. 48, 1520-1526 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006). [PubMed]
  2. M. Brown, Advanced Digital Photography (Media Publishing, 2004).
  3. R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005). [CrossRef]
  4. M. A. López-Álvarez, J. Hernández-Andrés, and J. Romero, “Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter,” Appl. Opt. 47, 4381-4390 (2008). [CrossRef] [PubMed]
  5. M. F. Carlsohn, “Spectral image processing in real-time,” J. Real Time Image Process. 1, 25-32 (2006). [CrossRef]
  6. M. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995). [CrossRef] [PubMed]
  7. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271-1273 (1997). [CrossRef] [PubMed]
  8. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47, F85-F95 (2008). [CrossRef] [PubMed]
  9. W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45, 1898-1908 (2006). [CrossRef] [PubMed]
  10. J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46, 013201 (2007). [CrossRef]
  11. W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007). [CrossRef]
  12. J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951-2961 (1997). [CrossRef]
  13. M. E. Gehm, R. John, R. Willett, T. Schultz, and D. Brady, “Single-shot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013-14027 (2007). [CrossRef] [PubMed]
  14. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44-B51 (2008). [CrossRef] [PubMed]
  15. D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005). [CrossRef] [PubMed]
  16. H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000). [CrossRef] [PubMed]
  17. P. O. Brown, “The full yeast genome on a chip,” http://cmgm.stanford.edu/pbrown/yeastchip.html.
  18. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55-59 (1972). [CrossRef]
  19. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited