OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1527–1534

Ray-based simulation of the propagation of light with different degrees of coherence through complex optical systems

Falko Riechert, Fabian Dürr, Udo Rohlfing, and Uli Lemmer  »View Author Affiliations


Applied Optics, Vol. 48, Issue 8, pp. 1527-1534 (2009)
http://dx.doi.org/10.1364/AO.48.001527


View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show the functional extension of a standard ray tracer to be capable of tracing light fields of different degrees of coherence through complex optical systems. The light fields are represented by spherical waves. An approximate reconstruction of the optical field is possible at arbitrary positions in an optical system under investigation. Therefore, we can calculate the intensity distribution as well as the complex degree of coherence between two points at arbitrary positions. Simulations of the coherence properties of basic optical systems, which can be described analytically, show excellent agreement with theory. Furthermore, we show simulations of the coherence properties of a two-tandem-array microlens beam homogenizer under illumination with fully and partially coherent light.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.4070) Coherence and statistical optics : Modes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 28, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 30, 2009
Published: March 4, 2009

Citation
Falko Riechert, Fabian Duerr, Udo Rohlfing, and Uli Lemmer, "Ray-based simulation of the propagation of light with different degrees of coherence through complex optical systems," Appl. Opt. 48, 1527-1534 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-8-1527


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2006).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  3. A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Nat. Acad. Sci. U.S.A. 6, 474-475 (1920). [CrossRef]
  4. E. Wolf, “Optics in terms of observable quantities,” Nuovo Cimento 12, 884-888 (1954). [CrossRef]
  5. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  6. H. T. Yura, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931-1948 (1987). [CrossRef]
  7. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  8. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  9. K. Okamoto, Fundamentals of Optical Waveguides (Academic , 2005).
  10. A. S. Glassner, An Introduction to Ray Tracing (Morgan Kaufmann, 1989).
  11. W. H. Steier, “The ray packet equivalent of a Gaussian light beam,” Appl. Opt. 5, 1229-1233 (1966). [CrossRef] [PubMed]
  12. J. D. Zook and T. C. Lee, “Geometrical interpretation of Gaussian beam optics,” Appl. Opt. 11, 2140-2145 (1972). [CrossRef] [PubMed]
  13. R. Herloski, S. Marshall, and R. Antos, “Gaussian beam ray-equivalent modeling and optical design,” Appl. Opt. 22, 1168-1174 (1983). [CrossRef] [PubMed]
  14. J. Arnaud, “Representation of Gaussian beams by complex rays,” Appl. Opt. 24, 538-543 (1985). [CrossRef] [PubMed]
  15. T. Habermann and P. Wellner-Bou, Department of Mathematics and Natural Sciences, University of Applied Sciences Darmstadt, Schoefferstrasse 3, D-64295 Darmstadt, Germany (personal communication).
  16. N. G. Douglas, A. R. Jones, and F. J. van Hoesel, “Ray-based simulation of an optical interferometer,” J. Opt. Soc. Am. A 12, 124-131 (1995). [CrossRef]
  17. E. Wolf and G. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541-546 (1984). [CrossRef]
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  19. P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1, 201-210 (1934). [CrossRef]
  20. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785-795 (1938). [CrossRef]
  21. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005).
  22. F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792-798 (2009). [CrossRef] [PubMed]
  23. M. Burkhardt and R. Brunner, “Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography,” Appl. Opt. 46, 7061-7067 (2007). [CrossRef] [PubMed]
  24. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  25. W. H. McCrea and F. J. W. Whipple, “Random paths in two and three dimensions,” Proc. R. Soc. Edinburgh 60, 281-298(1940).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited