OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 1 — Jan. 1, 2010
  • pp: 61–70

Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements

Ritobrata Sur, Thomas J. Boucher, Michael W. Renfro, and Baki M. Cetegen  »View Author Affiliations


Applied Optics, Vol. 49, Issue 1, pp. 61-70 (2010)
http://dx.doi.org/10.1364/AO.49.000061


View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diode laser sensor was developed for partial pressure and temperature measurements using a single water vapor transition. The Lorentzian half-width and line intensity of the transition were calibrated for conditions relevant to proton exchange membrane (PEM) fuel cell operation. Comparison of measured and simulated harmonics from wavelength-modulation spectroscopy is shown to yield accuracy of ± 2.5 % in water vapor partial pressure and ± 3 ° C in temperature despite the use of a single transition over a narrow range of temperatures. Collisional half-widths in air or hydrogen are measured so that calibrations can be applied to both anode and cathode channels of a PEM fuel cell. An in situ calibration of the nonlinear impact of modulation on laser wavelength is presented and used to improve the accuracy of the numerical simulation of the signal.

© 2010 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Spectroscopy

History
Original Manuscript: September 30, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: November 25, 2009
Published: December 21, 2009

Citation
Ritobrata Sur, Thomas J. Boucher, Michael W. Renfro, and Baki M. Cetegen, "Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements," Appl. Opt. 49, 61-70 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-1-61


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982). [CrossRef] [PubMed]
  2. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993). [CrossRef] [PubMed]
  3. E. C. Rea and R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454-4464 (1988). [CrossRef] [PubMed]
  4. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998). [CrossRef]
  5. A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139-144 (2006). [CrossRef]
  6. M. Cardona, “Modulation spectroscopy,” in Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1969), Vol. 11.
  7. P. F. Bernath, Spectra of Atoms and Molecules, 2nd ed. (Oxford U. Press, 2005), pp. 19-21.
  8. M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104-6116 (1993). [CrossRef] [PubMed]
  9. J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309-313(1979). [CrossRef]
  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldmanm, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533-572 (2009). [CrossRef]
  11. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982). [CrossRef] [PubMed]
  12. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992). [CrossRef] [PubMed]
  13. D. E. Cooper and J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606-608 (1986). [CrossRef] [PubMed]
  14. D. E. Cooper and R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470-480 (1987). [CrossRef]
  15. D. E. Cooper and R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single tone and two tone techniques,” Appl. Opt. 26, 3726-3732(1987). [CrossRef] [PubMed]
  16. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead salt diode laser,” Appl. Opt. 31, 718-731 (1992). [CrossRef] [PubMed]
  17. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061 (2006). [CrossRef] [PubMed]
  18. C. Tang and J. Telle, “Laser modulation spectroscopy of solids,” Jpn. J. Appl. Phys., Suppl. 45, 4503-4505 (1974). [CrossRef]
  19. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15-17 (1980). [CrossRef] [PubMed]
  20. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  21. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708-1710 (1961). [CrossRef]
  22. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522-2524(1965). [CrossRef]
  23. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276-3285 (1963). [CrossRef]
  24. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993). [CrossRef] [PubMed]
  25. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294-6302 (1994). [CrossRef] [PubMed]
  26. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003). [CrossRef] [PubMed]
  27. P. Kluczynski, A. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency doubled diode-laser light. I. theory,” Appl. Opt. 40, 783-793(2001). [CrossRef]
  28. P. Kluczynski, A. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency doubled diode-laser light. II. experiment,” Appl. Opt. 40, 794-804 (2001). [CrossRef]
  29. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002). [CrossRef]
  30. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007). [CrossRef]
  31. S. Basu, M. W. Renfro, and B. M. Cetegen, “Spatially resolved optical measurements of water partial pressure and temperature in a PEM fuel cell under dynamic operating conditions,” J. Power Sources 162, 286-293 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited