OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1734–1738

Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams

Svetlana N. Khonina and Sergey V. Karpeev  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. 1734-1738 (2010)
http://dx.doi.org/10.1364/AO.49.001734


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze a new optical system to transform linearly polarized laser modes into axially symmetric (radial or azimuthal) modes that show more promise in various applications, as well as generating various inhomogeneously polarized configurations. The system is based on the coherent composition of modal beams with phase diffraction gratings that allow the intermode phase shift to be varied without the need for auxiliary components. What makes the system simple and universal is the use of diffractive optical elements to generate required mode patterns with specific space orientation along with the simultaneous generation of different beams with different transverse mode content, all of which can subsequently be combined.

© 2010 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.2890) Holography : Holographic optical elements
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 28, 2010
Revised Manuscript: March 1, 2010
Manuscript Accepted: March 3, 2010
Published: March 24, 2010

Citation
Svetlana N. Khonina and Sergey V. Karpeev, "Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams," Appl. Opt. 49, 1734-1738 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009). [CrossRef]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000). [CrossRef]
  3. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000). [CrossRef] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  5. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793-1798 (2007). [CrossRef]
  6. V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).
  7. L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009). [CrossRef]
  8. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  10. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324-331 (2002). [PubMed]
  11. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007). [CrossRef] [PubMed]
  12. R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990). [CrossRef]
  13. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007). [CrossRef]
  14. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  15. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006). [CrossRef]
  16. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15, 13404-13414 (2007). [CrossRef] [PubMed]
  17. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063-3065 (2005). [CrossRef] [PubMed]
  18. H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008). [CrossRef] [PubMed]
  19. V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009). [CrossRef]
  20. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285-287 (2002). [CrossRef]
  21. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006). [CrossRef] [PubMed]
  22. K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46, 5160-5163 (2007). [CrossRef]
  23. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008). [CrossRef]
  24. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  25. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  26. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984-991 (2005). [CrossRef]
  27. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470-479 (2006). [CrossRef] [PubMed]
  28. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two dimensional polarization encoding with a phase only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549-1551 (2000). [CrossRef]
  29. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929-1931 (2002). [CrossRef]
  30. C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853-14861 (2008). [CrossRef] [PubMed]
  31. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  32. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004). [CrossRef]
  33. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14, 12839-12845 (2006). [CrossRef] [PubMed]
  34. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, 1973).
  35. S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).
  36. S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999). [CrossRef]
  37. S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009). [CrossRef]
  38. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited