OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1818–1825

Optical transfer functions derived from solar adaptive optics system data

Friedrich Wöger  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. 1818-1825 (2010)
http://dx.doi.org/10.1364/AO.49.001818


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adaptive optics (AO) systems installed at large ground-based telescopes partially correct Earth’s atmosphere, making post facto image reconstruction techniques necessary to produce diffraction-limited observations. To achieve accurate photometry in the reconstructed images, some post facto techniques require knowledge of transfer functions that describe the optical system. I present a new, fast method for the estimation of the long-exposure and speckle transfer functions from data gathered by a solar AO system simultaneously with the observations. The results of the presented method are tested with extensive analytical models, demonstrating that the estimation is robust for situations where the AO system is performing with Strehl ratios larger than 45%. Application to observations of solar granulation produces reconstructed images that are photometrically in agreement with earlier results.

© 2010 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 22, 2009
Revised Manuscript: January 27, 2010
Manuscript Accepted: February 19, 2010
Published: March 25, 2010

Citation
Friedrich Wöger, "Optical transfer functions derived from solar adaptive optics system data," Appl. Opt. 49, 1818-1825 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003. [CrossRef]
  2. O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003. [CrossRef]
  3. T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004. [CrossRef]
  4. R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007. [CrossRef]
  5. M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005). [CrossRef]
  6. K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974). [CrossRef]
  7. G. P. Weigelt, “Speckle interferometry and image reconstruction,” in International Astronomical Union Colloquium 50: High Angular Resolution Stellar Interferometry, J.Davis and W.J.Tango, eds. (University of Sydney, 1979), p. 33-1.
  8. J.-P. Veran, F. Rigaut, H. Maitre, and D. Rouan, “Estimation of the adaptive optics long-exposure point-spread function using control loop data,” J. Opt. Soc. Am. A 14, 3057-3069 (1997). [CrossRef]
  9. E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006). [CrossRef]
  10. J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006. [CrossRef]
  11. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971-980 (1973). [CrossRef]
  12. K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006). [CrossRef]
  13. C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007). [CrossRef]
  14. K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006). [CrossRef]
  15. F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007). [CrossRef] [PubMed]
  16. D. L. Fried, “Optical Resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966). [CrossRef]
  17. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174-1180 (1990). [CrossRef]
  18. J. Marino, Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. dissertation (New Jersey Institute of Technology, 2007), marinoj@nso.edu.
  19. F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009). [CrossRef]
  20. G.-M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 13, 1218-1225 (1996). [CrossRef]
  21. F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008). [CrossRef]
  22. M. C. Britton, “The anisoplanatic point-spread function in adaptive optics,” Publ. Astron. Soc. Pac. 118, 885-900 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited