OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1938–1950

Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1938-1950 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5 × 10 3 to 10 2 , leading to waveguides that exhibited propagation losses of 0.2 dB / cm at a wavelength of 633 nm and 0.6 dB / cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB , to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.

© 2010 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 1, 2009
Revised Manuscript: February 8, 2010
Manuscript Accepted: March 4, 2010
Published: March 29, 2010

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion, "Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm," Appl. Opt. 49, 1938-1950 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998). [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2505 (2002). [CrossRef]
  4. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354, 416-424 (2008). [CrossRef]
  5. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15, 10842 (2007). [CrossRef] [PubMed]
  6. T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, “Bending characteristics of fiber long-period gratings with cladding index modified by femtosecond laser,” J. Lightwave Technol. 24, 3147-3154 (2006). [CrossRef]
  7. T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092-5096 (2008). [CrossRef]
  8. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimme, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005). [CrossRef]
  9. S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, and P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser,” Appl. Opt. 47, 2098-2102 (2008). [CrossRef] [PubMed]
  10. FEMTOLASERS, Produktions GmbH, Fernkorngasse, Vienna, Austria, http://www.femtolasers.com/.
  11. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443-9458 (2008). [CrossRef] [PubMed]
  12. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956-1959 (1988). [CrossRef] [PubMed]
  13. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061-2063(2002). [CrossRef]
  14. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarization on direct writing of waveguides,” Opt. Express 14, 13158 (2006). [CrossRef] [PubMed]
  15. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, and P. Laporta, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express , 13, 612-620 (2005). [CrossRef] [PubMed]
  16. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52-63 (1990). [CrossRef] [PubMed]
  17. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123-175 (1970). [CrossRef]
  18. http://www.uqgoptics.com
  19. E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer (McGraw-Hill, 1959).
  20. M. Dubov, T. D. P. Allsop, S. R. Natarajan, V. K. Mezentsev, and I. Bennion, “Low-loss waveguides in borosilicate glass fabricated by high-repetition-rate femtosecond chirp-pulsed oscillator,” in Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (IEEE, 2009), paper CE.P.4 MON.
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited