OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2066–2071

Double-grating polarizer for terahertz radiation with high extinction ratio

Lin Sun, Zhi-Hui Lv, Wei Wu, Wei-Tao Liu, and Jian-Min Yuan  »View Author Affiliations

Applied Optics, Vol. 49, Issue 11, pp. 2066-2071 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a layout of a high extinction ratio polarizer in the terahertz (THz) domain. This polarizer is composed of two dense metal wire gratings separated in parallel, of which the grating constant is much smaller than the incident wavelength. Numerical analysis shows that, in the range of 0.3 THz 3 THz , the transmission of TM wave through this polarizer is higher than 97% and the extinction ratio achieved is about 180 dB —much higher than the conventional wire-grid polarizer.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.2230) Diffraction and gratings : Fabry-Perot

ToC Category:
Diffraction and Gratings

Original Manuscript: December 8, 2009
Revised Manuscript: February 12, 2010
Manuscript Accepted: March 15, 2010
Published: April 2, 2010

Lin Sun, Zhi-Hui Lv, Wei Wu, Wei-Tao Liu, and Jian-Min Yuan, "Double-grating polarizer for terahertz radiation with high extinction ratio," Appl. Opt. 49, 2066-2071 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007). [CrossRef]
  2. T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007). [CrossRef]
  3. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008). [CrossRef]
  4. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, “Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67, 979-981 (1977). [CrossRef]
  5. S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008). [CrossRef]
  6. C.-F. Hsieh, Y.-C. Lai, P.-P. Panand, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174-1176 (2008). [CrossRef] [PubMed]
  7. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274-276 (2009). [CrossRef] [PubMed]
  8. V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017. [CrossRef]
  9. J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979). [CrossRef]
  10. E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982). [CrossRef]
  11. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000). [CrossRef]
  12. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323-2334 (2006). [CrossRef] [PubMed]
  13. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007). [CrossRef]
  14. Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008). [CrossRef]
  15. F. Flory, L. Escoubas, and B. Lazarides, “Artificial anisotropy and polarizing filters,” Appl. Opt. 41, 3332-3335 (2002). [CrossRef] [PubMed]
  16. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996). [CrossRef]
  17. F. Träger, Handbook of Lasers and Optics (Springer, 2007). [CrossRef]
  18. H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008). [CrossRef]
  19. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  20. C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007). [CrossRef]
  21. H. B. Chan, Z. Marcet, Kwangje Woo, and D. B. Tanner, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516-518 (2006). [CrossRef] [PubMed]
  22. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited