OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2161–2167

Engineered beam shaping effect in anisotropic photonic crystals

Oana Rasoga and Daniela Dragoman  »View Author Affiliations

Applied Optics, Vol. 49, Issue 11, pp. 2161-2167 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that an anisotropic photonic crystal can modify the shape of a highly convergent incident optical beam. The beam shape engineering is relatively easy, and the photonic crystal is less alignment demanding than beam shapers that incorporate several optical systems. The shape of the output beam can be controlled by an appropriate choice of the angular divergence of the beam, the number of periods and the birefringence values and layer widths of the constituent materials.

© 2010 Optical Society of America

OCIS Codes
(310.4165) Thin films : Multilayer design
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: November 2, 2009
Revised Manuscript: January 20, 2010
Manuscript Accepted: March 5, 2010
Published: April 7, 2010

Oana Rasoga and Daniela Dragoman, "Engineered beam shaping effect in anisotropic photonic crystals," Appl. Opt. 49, 2161-2167 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  2. L.Vicari, ed., Optical Applications of Liquid Crystals (IOP, 2003).
  3. H. F. Gleeson, A. J. Murray, E. Fraser, and A. Zoro, “An electrically addressed liquid crystal filter for tunable lasers,” Opt. Commun. 212, 165-168 (2002). [CrossRef]
  4. R. Hamdi, B.-E. Benkelfat, Q. Zou, and Y. Gottesman, “Bandwidth tuning of hybrid liquid-crystal Šolc filters based on an optical cancelling technique,” Opt. Commun. 269, 64-68(2007). [CrossRef]
  5. Y.-M. Lee, K.-H. Lee, Y. Choi, and J.-H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343-6346 (2008).
  6. M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2086001 (2009).
  7. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021-1032 (2007). [CrossRef]
  8. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 183061-3069 (2007). [CrossRef]
  9. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236-1242 (2006). [CrossRef]
  10. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 131090-1097 (2005).
  11. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005).
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).
  13. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  14. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000). [CrossRef]
  15. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
  16. R. Martínez-Herrero, G. Piquero, and P. M. Mejías, “On the propagation of the kurtosis of general beams,” Opt. Commun. 115, 225-232 (1995). [CrossRef]
  17. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  18. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479-1481 (2005). [CrossRef]
  19. D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16, 1331-1342 (2008). [CrossRef]
  20. M. Fratz, S. Sinzinger, and D. Giel, “Design and fabrication of polarization-holographic elements for laser beam shaping,” Appl. Opt. 48, 2669-2677 (2009). [CrossRef]
  21. T. G. Jabbour and S. M. Kuebler, “Vectorial beam shaping,” Opt. Express 16, 7203-7213 (2008). [CrossRef]
  22. D. Palima and J. Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express 16, 1507-1516 (2008). [CrossRef]
  23. Z. Tian, M. Nix, and S. S.-H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34, 229-231(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited