OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2168–2172

Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice

Tianbao Yu, Jiehui Huang, Nianhua Liu, Jianyi Yang, Qinghua Liao, and Xiaoqing Jiang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 11, pp. 2168-2172 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 μm . The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: December 1, 2009
Revised Manuscript: January 30, 2010
Manuscript Accepted: February 5, 2010
Published: April 7, 2010

Tianbao Yu, Jiehui Huang, Nianhua Liu, Jianyi Yang, Qinghua Liao, and Xiaoqing Jiang, "Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice," Appl. Opt. 49, 2168-2172 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood, “Tunable Mach-Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photonics Technol. Lett. 9, 773-775 (1997). [CrossRef]
  2. L. B. Soldano, A. H. DeVreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 6, 402-405 (1994). [CrossRef]
  3. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100-102 (2005). [CrossRef]
  4. P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photonics Technol. Lett. 6, 245-248 (1994). [CrossRef]
  5. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72-74 (2003). [CrossRef]
  6. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003). [CrossRef] [PubMed]
  7. Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19, 825-827 (2007). [CrossRef]
  8. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 171435-1437 (2005). [CrossRef]
  9. T. Yu, X. Jiang, Q. Liao, W. Qi, J. Yang, and M. Wang, “Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps,” Chin. Opt. Lett. 5, 690-692 (2007).
  10. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photonics Technol. Lett. 20, 93-95 (2008). [CrossRef]
  11. Z. Qiang and W. Zhou, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831(2007). [CrossRef] [PubMed]
  12. M. Djavid, A. Ghaffari, and M. S. Abrishamian, “Coupled-mode analysis of photonic crystal add-drop filters based on ring resonators,” J. Opt. Soc. Am. B 25, 1829-1832 (2008). [CrossRef]
  13. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  14. S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514-2516 (2001). [CrossRef]
  15. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. D. L. Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063-2077 (1999). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited