OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2173–2182

Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong–Ou–Mandel interferometer

Peter J. Thomas, Jessica Y. Cheung, Christopher J. Chunnilall, and Malcolm H. Dunn  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2173-2182 (2010)
http://dx.doi.org/10.1364/AO.49.002173


View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for using the Hong–Ou–Mandel (HOM) interference technique to quantify photon indistinguishability within an associated uncertainty. The method allows the relative importance of various experimental factors affecting the HOM visibility to be identified, and enables the actual indistinguishability, with an associated uncertainty, to be estimated from experimentally measured quantities. A measurement equation has been derived that accounts for the non-ideal performance of the interferometer. The origin of each term of the equation is explained, along with procedures for their experimental evaluation and uncertainty estimation. These uncertainties are combined to give an overall uncertainty for the derived photon indistinguishability. The analysis was applied to measurements from an inter ferometer sourced with photon pairs from a parametric downconversion process. The measured photon indistinguishably was found to be 0.954 ± 0.036 by using the prescribed method.

© 2010 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 8, 2009
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 16, 2010
Published: April 7, 2010

Citation
Peter J. Thomas, Jessica Y. Cheung, Christopher J. Chunnilall, and Malcolm H. Dunn, "Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong-Ou-Mandel interferometer," Appl. Opt. 49, 2173-2182 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between 2 photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef]
  2. Z. Y. Ou and L. Mandel, “Violation of Bell's inequality and classical probability in a 2-photon correlation experiment,” Phys. Rev. Lett. 61, 50-53 (1988). [CrossRef]
  3. D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955-958 (1999). [CrossRef]
  4. E. Knill, “Quantum computing with realistically noisy devices,” Nature 434, 39-44 (2005). [CrossRef]
  5. E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys. 73, 127-140(2005). [CrossRef]
  6. Y. Shih, “Entangled biphoton source-property and preparation,” Rep. Prog. Phys. 66, 1009-1044 (2003). [CrossRef]
  7. E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1-10 (1999).
  8. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817(2002). [CrossRef]
  9. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef]
  10. P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A 65, 052104 (2002). [CrossRef]
  11. Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102-105 (2002). [CrossRef]
  12. A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305(2004). [CrossRef]
  13. Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, and E. Diamanti, “Single photons for quantum information systems,” Prog. Informatics 1, 5-37 (2005).
  14. C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B 74, 035407 (2006). [CrossRef]
  15. T. B. Pittman, J. D. Franson, and B. C. Jacobs, “Investigation of a single-photon source based on quantum interference,” New J. Phys. 9, 195 (2007). [CrossRef]
  16. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253-255 (2007). [CrossRef]
  17. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704-708(2007). [CrossRef]
  18. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594-597 (2002). [CrossRef]
  19. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46-52 (2001). [CrossRef]
  20. P. P. Rohde and T. C. Ralph, “Frequency and temporal effects in linear optical quantum computing,” Phys. Rev. A 71, 032320(2005). [CrossRef]
  21. J. G. Rarity and P. R. Tapster, “Fourth-order interference in parametric downconversion,” J. Opt. Soc. Am. B 6, 1221-1226(1989). [CrossRef]
  22. “Guide to the expression of uncertainty in measurement” (GUM) (International Organization for Standardization, 1995).
  23. P. J. Thomas, J. Y. Cheung, C. J. Chunnilall, and M. H. Dunn, “The Hong-Ou-Mandel interferometer: a new procedure for alignment,” Rev. Sci. Instrum. 80, 036101 (2009). [CrossRef]
  24. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003). [CrossRef]
  25. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N.C. Wong, and F. X. Kartner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903(2005). [CrossRef]
  26. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769-12776(2007). [CrossRef]
  27. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, and S. P. Kulik, “Collinear two-photon state with spectral properties of type-I and polarization properties of type-II spontaneous parametric down-conversion: preparation and testing,” Phys. Rev. A 64, 041803 (2001). [CrossRef]
  28. Y.-H. Kim, “Measurement of one-photon and two-photon wavepackets in spontaneous parametric downconversion,” J. Opt. Soc. Am. B 20, 1959-1966 (2003). [CrossRef]
  29. J. Y. Cheung, C. J. Chunnilall, and J. Wang, “Radiometric applications of correlated photon metrology,” Proc. SPIE 5551, 220-230 (2004). [CrossRef]
  30. M. A. Albota and E. Dauler, “Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter,” J. Mod. Opt. 51, 1417-1432 (2004).
  31. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a quantum eraser--a revival of coherence in a 2-photon interference experiment,” Phys. Rev. A 45, 7729-7739(1992). [CrossRef]
  32. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529-2539 (1963). [CrossRef]
  33. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991). [CrossRef]
  34. R. P. Feynman, R. B. Leighton, and M. Sands, Vol. 3 of The Feynman Lectures on Physics (Addison-Wesley, 1965).
  35. H. Mishina and T. Asakura, “2 Gaussian-beam interference,” Nouv. Rev. Opt. 5, 101-107 (1974). [CrossRef]
  36. L. Mandel, “Coherence and indistinguishability,” Opt. Lett. 16, 1882-1883 (1991). [CrossRef]
  37. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  38. J. Cheung, J. L. Gardner, A. Migdall, S. Polyakov, and M. Ware, “High accuracy dual lens transmittance measurements,” Appl. Opt. 46, 5396-5403 (2007). [CrossRef]
  39. D. Calonico, F. Levi, L. Lorini, and G. Mana, “Bayesian inference of a negative quantity from positive measurement results,” Metrologia 46, 267-271 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited