OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2215–2219

Surface waves in two-photon photorefractive media

Xiangkui Ren, Tianhao Zhang, Huihui Ma, Weiwei Shao, Jingjun Xu, and Jianguo Tian  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2215-2219 (2010)
http://dx.doi.org/10.1364/AO.49.002215


View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the evolution equation of surface waves due to the two-photon photorefractive effect. It is shown theoretically that the surface waves can be supported by two-photon photorefractive media. The spatial frequency of photorefractive surface waves can be changed by an applied external electric field, which indicates a method for transforming the surface waves between high-frequency modes and low-frequency modes.

© 2010 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 12, 2010
Manuscript Accepted: March 19, 2010
Published: April 9, 2010

Citation
Xiangkui Ren, Tianhao Zhang, Huihui Ma, Weiwei Shao, Jingjun Xu, and Jianguo Tian, "Surface waves in two-photon photorefractive media," Appl. Opt. 49, 2215-2219 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Garcia Quirino, J. J. Sanchez Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571-1577 (1995). [CrossRef] [PubMed]
  2. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075-2077 (1995). [CrossRef] [PubMed]
  3. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A 76, 013827 (2007). [CrossRef]
  4. T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express 17, 14150 (2009). [CrossRef] [PubMed]
  5. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal nonlinearity and local nonlinearity,” Opt. Lett. 34, 3298-3300 (2009). [CrossRef] [PubMed]
  6. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007). [CrossRef] [PubMed]
  7. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96, 063901 (2006). [CrossRef] [PubMed]
  8. Y. V. Kartashov, V. V. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006). [CrossRef] [PubMed]
  9. M. Heinrich, Y. V. Kartashov, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, “Observation of two-dimensional coherent surface vector lattice solitons,” Opt. Lett. 34, 1624-1626 (2009). [CrossRef] [PubMed]
  10. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429-2432 (1999). [CrossRef]
  11. T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73, 153402(2006). [CrossRef]
  12. A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242-3244(1995). [CrossRef]
  13. W. W. Shao, L. Li, W. W. Liu, T. H. Zhang, H. H. Ma, J. J. Xu, and J. G. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett. 95, 211105 (2009). [CrossRef]
  14. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944-2947 (1997). [CrossRef]
  15. W. Ramadan, E. Fazio, A. Mascioletti, F. Inam, R. Rinaldi, A. Bosco, V. I. Vlad, A. Petris, and M. Bertolotti, “Stationary self-confined beams at 633 nm in Bi12SiO20 crystals,” J. Opt. A Pure Appl. Opt. 5, S432-S436 (2003). [CrossRef]
  16. E. Castro-Camus and L. F. Magana, “Prediction of the physical response for the two-photon photorefractive effect,” Opt. Lett. 28, 1129-1131 (2003). [CrossRef] [PubMed]
  17. H. Nishioka, K. Hayasaka, S. Ohta, H. Tomita, and K. Ueda, “Femtosecond pulse amplification by a two-photon arranged photorefractive amplifier,” Opt. Express 15, 4830-4834 (2007). [CrossRef] [PubMed]
  18. C. F. Hou, Y. B. Pei, Z. X. Zhou, and X. D. Sun, “Spatial solitons in two-photon photorefractive media,” Phys. Rev. A 71, 053817(2005). [CrossRef]
  19. K. Lu, W. Zhao, Y. Yang, Y. Yang, M. Zhang, R. A. Rupp, M. Fally, Y. Zhang, and J. Xu, “One-dimensional incoherently coupled grey solitons in two-photon photorefractive media,” Appl. Phys. B 87, 469-473 (2007). [CrossRef]
  20. G. Y. Zhang and J. S. Liu, “Screening-photovoltaic spatial solitons in biased two-photon photovoltaic photorefractive crystals,” J. Opt. Soc. Am. B 26, 113-120 (2009). [CrossRef]
  21. B. Liu, L. Liu, and L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170-2176(1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited