OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2277–2287

Approximate analytic astigmatism of unit-magnification multipass system

Kexin Chen, Huaidong Yang, Liqun Sun, and Guofan Jin  »View Author Affiliations

Applied Optics, Vol. 49, Issue 12, pp. 2277-2287 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a way to estimate the approximate analytic astigmatism with a high accuracy for any unit-magnification multipass system (UMS). The coaxial optical transmission model for UMS is simplified based on the system’s features. Furthermore, astigmatism is derived as a distinct form of vector addition and, thus, feasible analytic astigmatism can be obtained. The effectiveness of our method is verified by simulations for a Bernstein–Herzberg White cell. In our cases, the relative error of optimization for astigmatism correction by our method is smaller than 5‰, which is only one-tenth of that by Kohn’s method. Our method significantly improves the efficiency for astigmatism correction, and further benefits the optical design of a UMS.

© 2010 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(080.2730) Geometric optics : Matrix methods in paraxial optics
(220.1000) Optical design and fabrication : Aberration compensation
(230.1150) Optical devices : All-optical devices
(080.1005) Geometric optics : Aberration expansions

Original Manuscript: January 29, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 19, 2010
Published: April 13, 2010

Kexin Chen, Huaidong Yang, Liqun Sun, and Guofan Jin, "Approximate analytic astigmatism of unit-magnification multipass system," Appl. Opt. 49, 2277-2287 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Chen, H. Yang, L. Sun, and G. Jin, “Generalized method for calculating astigmatism of unit-magnification multipass system,” Appl. Opt.  49, 1964–1971 (2010). [CrossRef] [PubMed]
  2. R. P. Blickensderfer, G. E. Ewing, and R. Leonard, “A long path, low temperature cell,” Appl. Opt.  7, 2214–2217(1968). [CrossRef] [PubMed]
  3. H. M. Pickett, G. M. Bradley, and H. L. Strauss, “A new White type multiple pass absorption cell,” Appl. Opt.  9, 2397–2398 (1970). [CrossRef] [PubMed]
  4. D. Horn and G. C. Pimentel, “2.5 Km low-temperature multiple-reflection cell,” Appl. Opt.  10, 1892–1898 (1971). [CrossRef] [PubMed]
  5. J.-F. O. Doussin, R. Dominique, and C. Patrick, “Multiple-pass cell for very-long-path infrared spectrometry,” Appl. Opt.  38, 4145–4150 (1999). [CrossRef]
  6. S. M. Chernin, “Promising version of the three-objective multipass matrix system,” Opt. Express  10, 104–107(2002). [PubMed]
  7. D. R. Glowacki, A. Goddard, and P. W. Seakins, “Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR spectrometry,” Appl. Opt.  46, 7872–7883 (2007). [CrossRef] [PubMed]
  8. S. M. Chernin, S. B. Mikhailov, and E. G. Barskaya, “Aberrations of a multipass matrix system,” Appl. Opt.  31, 765–769(1992). [CrossRef] [PubMed]
  9. Y. G. Barskaya, “Aberrations of a multipass cell,” Opt. Technol.  38, 278–280 (1971).
  10. C. Kexin, Y. Huaidong, S. Liqun, and J. Guofan, “Astigmatism analysis by matrix methods in White cells,” Proc. SPIE  7156, 71560G (2008).
  11. T. R. Reesor, “The astigmatism of a multiple path absorption cell,” J. Opt. Soc. Am.  41, 1059–1060 (1951). [CrossRef]
  12. T. H. Edwards, “Multiple-traverse absorption cell design,” J. Opt. Soc. Am.  51, 98–102 (1961). [CrossRef]
  13. W. H. Kohn, “Astigmatism and White cells: theoretical considerations on the construction of an anastigmatic White cell,” Appl. Opt.  31, 6757–6764 (1992). [CrossRef] [PubMed]
  14. H. J. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths,” J. Chem. Phys.  16, 30–39 (1948). [CrossRef]
  15. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986), pp. 158–161.
  16. R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE  251, 146–153 (1980).
  17. K. P. Thompson, “Practical methods for the optical design of systems without symmetry,” Proc. SPIE  2774, 2–12(1996). [CrossRef]
  18. J. R. Rogers, “Design techniques for systems containing tilted components,” Proc. SPIE  3737, 286–300 (1999). [CrossRef]
  19. J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,” Opt. Eng.  39, 1776–1787 (2000). [CrossRef]
  20. K. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J. Opt. Soc. Am. A  22, 1389–1401 (2005). [CrossRef]
  21. L. B. Moore, A. M. Hvisc, and J. Sasian, “Aberration fields of a combination of plane symmetric systems,” Opt. Express  16, 15655–15670 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited